990 resultados para line: profiles
Resumo:
Number lines are part of our everyday life (e.g., thermometers, kitchen scales) and are frequently used in primary mathematics as instructional aids, in texts and for assessment purposes on mathematics tests. There are two major types of number lines; structured number lines, which are the focus of this paper, and empty number lines. Structured number lines represent mathematical information by the placement of marks on a horizontal or vertical line which has been marked into proportional segments (Figure 1). Empty number lines are blank lines which students can use for calculations (Figure 2) and are not discussed further here (see van den Heuvel-Panhuizen, 2008, on the role of empty number lines). In this article, we will focus on how students’ knowledge of the structured number line develops and how they become successful users of this mathematical tool.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.
Resumo:
We describe research into the identification of anomalous events and event patterns as manifested in computer system logs. Prototype software has been developed with a capability that identifies anomalous events based on usage patterns or user profiles, and alerts administrators when such events are identified. To reduce the number of false positive alerts we have investigated the use of different user profile training techniques and introduce the use of abstractions to group together applications which are related. Our results suggest that the number of false alerts that are generated is significantly reduced when a growing time window is used for user profile training and when abstraction into groups of applications is used.
Resumo:
Resistance to rice virus diseases is an important requirement in many Southeast Asian rice breeding programs. Inheritance of resistance to rice tungro spherical virus (RTSV) in TW5, a near-isogenic line derived from Indonesian rice cultivar Utri Merah, was compared to that in TKM6, an Indian rice cultivar. Both TKM6 and Utri Merah are cultivars resistant to RTSV infections. Crosses were made between TKM6 and TN1, a susceptible cultivar, and between TW5 and TN1, and F3 lines were evaluated for their resistance to RTSV using two RTSV inoculum sources and a serological assay (ELISA). In TKM6, the resistance to the mixture of RTSV-V + RTBV inoculum source was controlled by a single recessive gene, whereas in TW5, the resistance was controlled by two recessive genes. A single recessive gene, however, controlled the resistance in TW5 when another RTSV variant, RTSV-VI, was used, suggesting that the resistance in TW5 depends on the nature of the RTSV inoculum used. RT-PCR, sequence, and phylogenetic analyses confirmed that RTSV-VI inoculum differs from RTSV-V inoculum and accurate phenotyping of the resistance to RTSV requires the use of a genetic marker.
Resumo:
Although relatively few studies have been undertaken analyzing the drivers of performance for construction companies in producing and delivering satisfactory quality of project works, findings from previous research reveal that there is a significant correlation between the company’s organisational culture and the quality performance of contractors. It has also been noted that the nature of organisational culture is a major determinant factor for quality improvement. This paper presents a summary of the results of a pilot study investigating the organisational culture profiles of five Indonesian construction companies. The survey utilizes the Organisational Culture Assessment Instrument (OCAI), which is based on the Competing Values Framework (CVF). This instrument assesses six important and significant traits of organisational culture: dominant characteristics, organisational leadership, management of employees, organisational ‘glue’, strategic emphasis, and criteria of success. These assessed cultural dimensions identify the most close-fitting perspective of a company’s inherent culture drawn from four possible types: clan, adhocracy, market, or hierarchy culture. Further discussion is presented, which describes the companies’ dominant cultural profiles in terms of strength and congruence and how an effective quality management system operates within the dominant culture type. This analysis contributes to the finding that a suitably ‘strong’ organisational culture impacts positively on construction organisation success within its own specific sector.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
Intelligent agents are an advanced technology utilized in Web Intelligence. When searching information from a distributed Web environment, information is retrieved by multi-agents on the client site and fused on the broker site. The current information fusion techniques rely on cooperation of agents to provide statistics. Such techniques are computationally expensive and unrealistic in the real world. In this paper, we introduce a model that uses a world ontology constructed from the Dewey Decimal Classification to acquire user profiles. By search using specific and exhaustive user profiles, information fusion techniques no longer rely on the statistics provided by agents. The model has been successfully evaluated using the large INEX data set simulating the distributed Web environment.
A simplified invariant line analysis for face-centred cubic/body-centred cubic precipitation systems
Resumo:
The size of rat-race and branch-line couplers can be reduced by using periodic loading or artificial transmission lines. The objective of this work is to extend the idea of size reduction through periodic loading to coupled-line 90° hybrids. A procedure for the extraction of the characteristic parameters of a coupled-line 4-port from a single set of S-parameters is described. This method can be employed to design of coupled artificial transmission line couplers of arbitrary geometry. The procedure is illustrated through the design a broadside-coupled stripline hybrid, periodically loaded with stubs. Measured results for a prototype coupler confirm the validity of the theory.
Resumo:
Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
Resumo:
Retrotransposons are a class of transposable elements that represent a major fraction of the repetitive DNA of most eukaryotes. Their abundance stems from their expansive replication strategies. We screened and isolated sequence fragments of long terminal repeat (LTR), gypsy-like reverse transcriptase (rt) and gypsy-like envelope (env) domains, and two partial sequences of non-LTR retrotransposons, long interspersed element (LINE), in the clonally propagated allohexaploid sweet potato (Ipomoea batatas (L.) Lam.) genome. Using dot-blot hybridization, these elements were found to be present in the ~1597 Mb haploid sweet potato genome with copy numbers ranging from ~50 to ~4100 as observed in the partial LTR (IbLtr-1) and LINE (IbLi-1) sequences, respectively. The continuous clonal propagation of sweet potato may have contributed to such a multitude of copies of some of these genomic elements. Interestingly, the isolated gypsy-like env and gypsy-like rt sequence fragments, IbGy-1 (~2100 copies) and IbGy-2 (~540 copies), respectively, were found to be homologous to the Bagy-2 cDNA sequences of barley (Hordeum vulgare L.). Although the isolated partial sequences were found to be homologous to other transcriptionally active elements, future studies are required to determine whether they represent elements that are transcriptionally active under normal and (or) stressful conditions.