865 resultados para lateral and longitudinal motion compensation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NAKAGAWA, T. H., E. T. U. MORIYA, C. D. MACIEL, and F. V. SERRAO. Frontal Plane Biomechanics in Males and Females with and without Patellofemoral Pain. Med. Sci. Sports &ere., Vol. 44, No. 9, pp. 1747-1755, 2012. Purpose: The study's purpose was to compare trunk, pelvis, hip, and knee frontal plane biomechanics in males and females with and without patellofemoral pain syndrome (PFPS) during stepping. Methods: Eighty recreational athletes were equally divided into four groups: female PFPS, female controls, male PFPS, and male controls. Trunk, pelvis, hip, and knee frontal plane kinematics and activation of the gluteus medius were evaluated at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of knee flexion during the downward and upward phases of the stepping task. Isometric hip abductor torque was also evaluated. Results: Females showed increased hip adduction and knee abduction at all knee flexion angles, greater ipsilateral trunk lean and contralateral pelvic drop from 60 degrees of knee flexion till the end of the stepping task (P = 0.027-0.001), diminished hip abductor torque (P < 0.001), and increased gluteus medius activation than males (P = 0.008-0.001). PFPS subjects presented increased knee abduction at all the angles evaluated; greater trunk, pelvis, and hip motion from 45 of knee flexion of the downward phase till the end of the maneuver; and diminished gluteus medius activation at 60 degrees of knee flexion, compared with controls (P = 0.034-0.001). Females with PFPS showed lower hip abductor torque compared with the other groups. Conclusions: Females presented with altered frontal plane biomechanics that may predispose them to knee injury. PFPS subjects showed frontal plane biomechanics that could increase the lateral patellofemoral joint stress at all the angles evaluated and could increase even more from 45 degrees of knee flexion in the downward phase untill the end of the maneuver. Hip abductor strengthening and motor control training should be considered when treating females with PFPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In adults with congenital heart disease and a systemic right ventricle, subaortic ventricular systolic dysfunction is common. Echocardiographic assessment of systolic right ventricular (RV) function in these patients is important but challenging. The aim of the present study was to assess the reliability of conventional echocardiographic RV functional parameters to quantify the systolic performance of a subaortic right ventricle. We compared 56 contemporary echocardiograms and cardiac magnetic resonance studies in 37 adults, aged 26.9 ± 7.4 years, with complete transposition and a subaortic right ventricle. The fractional area change (FAC), lateral tricuspid annular plane systolic excursion, lateral RV systolic motion velocities by tissue Doppler, RV myocardial performance index, and the rate of systolic RV pressure increase (dp/dt) measured across the tricuspid regurgitant jet were assessed by echocardiography and correlated with the cardiac magnetic resonance-derived RV ejection fraction (EF). The mean RVEF was 48.0 ± 7.8%. FAC (r(2) = 0.206, p = 0.001) and dp/dt (r(2) = 0.173, p = 0.009) significantly correlated with RVEF, and the other nongeometric echocardiographic parameters failed to show a significant correlation with RVEF by linear regression analysis. FAC <33% and dp/dt <1,000 mm Hg/s identified a RVEF of <50% with a sensitivity of 77% and 69% and a specificity of 58% and 87%, respectively. In conclusion, in patients with a systemic right ventricle, routine nongeometric echocardiographic parameters of RV function correlated weakly with cardiac magnetic resonance-derived EF. RV FAC and the measurement of the rate of systolic RV pressure increase (dp/dt) should be preferentially used to assess systemic systolic function in adult patients with a subaortic right ventricle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion. METHODOLOGY/PRINCIPAL FINDINGS: We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else's body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms. CONCLUSIONS/SIGNIFICANCE: The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a "vestibular mirror neuron system".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lumbar spinal instability (LSI) is a common spinal disorder and can be associated with substantial disability. The concept of defining clinically relevant classifications of disease or 'target condition' is used in diagnostic research. Applying this concept to LSI we hypothesize that a set of clinical and radiological criteria can be developed to identify patients with this target condition who are at high risk of 'irreversible' decompensated LSI for whom surgery becomes the treatment of choice. In LSI, structural deterioration of the lumbar disc initiates a degenerative cascade of segmental instability. Over time, radiographic signs become visible: traction spurs, facet joint degeneration, misalignment, stenosis, olisthesis and de novo scoliosis. Ligaments, joint capsules, local and distant musculature are the functional elements of the lumbar motion segment. Influenced by non-functional factors, these functional elements allow a compensation of degeneration of the motion segment. Compensation may happen on each step of the degenerative cascade but cannot reverse it. However, compensation of LSI may lead to an alleviation or resolution of clinical symptoms. In return, the target condition of decompensation of LSI may cause the new occurrence of symptoms and pain. Functional compensation and decompensation are subject to numerous factors that can change which makes estimation of an individual's long-term prognosis difficult. Compensation and decompensation may influence radiographic signs of degeneration, e.g. the degree of misalignment and segmental angulation caused by LSI is influenced by the tonus of the local musculature. This conceptual model of compensation/decompensation may help solve the debate on functional and psychosocial factors that influence low back pain and to establish a new definition of non-specific low back pain. Individual differences of identical structural disorders could be explained by compensated or decompensated LSI leading to changes in clinical symptoms and pain. Future spine surgery will have to carefully define and measure functional aspects of LSI, e.g. to identify a point of no return where multidisciplinary interventions do not allow a re-compensation and surgery becomes the treatment of choice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canonical test cases for sloshing wave impact problems are pre-sented and discussed. In these cases the experimental setup has been simpli?ed seeking the highest feasible repeatability; a rectangular tank subjected to harmonic roll motion has been the tested con?guration. Both lateral and roof impacts have been studied, since both cases are relevant in sloshing assessment and show speci?c dynamics. An analysis of the impact pressure of the ?rst four impact events is provided in all cases. It has been found that not in all cases a Gaussian ?tting of each individual peak is feasible. The tests have been conducted with both water and oil in order to obtain high and moderate Reynolds number data; the latter may be useful as simpler test cases to assess the capabilities of CFD codes in simulating sloshing impacts. The re-peatability of impact pressure values increases dramatically when using oil. In addition, a study of the two-dimensionality of the problem using a tank con?guration that can be adjusted to 4 di?erent thicknesses has been carried out. Though the kinemat-ics of the free surface does not change signi cantly in some of the cases, the impact pressure values of the ?rst impact events changes substantially from the small to the large aspect ratios thus meaning that attention has to be paid to this issue when reference data is used for validation of 2D and 3D CFD codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 12 January 2010, an earthquake hit the city of Port-au-Prince, capital of Haiti. The earthquake reached a magnitude Mw 7.0 and the epicenter was located near the town of Léogâne, approximately 25 km west of the capital. The earthquake occurred in the boundary region separating the Caribbean plate and the North American plate. This plate boundary is dominated by left-lateral strike slip motion and compression, and accommodates about 20 mm/y slip, with the Caribbean plate moving eastward with respect to the North American plate (DeMets et al., 2000). Initially the location and focal mechanism of the earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillo-Plantain Garden fault system (EPGFZ), however Hayes et al., (2010) combined seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process involved slip on multiple faults. Besides, the authors showed that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the EPGFZ. In December 2010, a Spanish cooperation project financed by the Politechnical University of Madrid started with a clear objective: Evaluation of seismic hazard and risk in Haiti and its application to the seismic design, urban planning, emergency and resource management. One of the tasks of the project was devoted to vulnerability assessment of the current building stock and the estimation of seismic risk scenarios. The study was carried out by following the capacity spectrum method as implemented in the software SELENA (Molina et al., 2010). The method requires a detailed classification of the building stock in predominant building typologies (according to the materials in the structure and walls, number of stories and age of construction) and the use of the building (residential, commercial, etc.). Later, the knowledge of the soil characteristics of the city and the simulation of a scenario earthquake will provide the seismic risk scenarios (damaged buildings). The initial results of the study show that one of the highest sources of uncertainties comes from the difficulty of achieving a precise building typologies classification due to the craft construction without any regulations. Also it is observed that although the occurrence of big earthquakes usually helps to decrease the vulnerability of the cities due to the collapse of low quality buildings and the reconstruction of seismically designed buildings, in the case of Port-au-Prince the seismic risk in most of the districts remains high, showing very vulnerable areas. Therefore the local authorities have to drive their efforts towards the quality control of the new buildings, the reinforcement of the existing building stock, the establishment of seismic normatives and the development of emergency planning also through the education of the population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10−26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin–actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600–320 pN when filaments were turned through 90°, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early visual processing analyses fine and coarse image features separately. Here we show that motion signals derived from fine and coarse analyses are combined in rather a surprising way: Coarse and fine motion sensors representing the same direction of motion inhibit one another and an imbalance can reverse the motion perceived. Observers judged the direction of motion of patches of filtered two-dimensional noise, centered on 1 and 3 cycles/deg. When both sets of noise were present and only the 3 cycles/deg noise moved, judgments were reversed at short durations. When both sets of noise moved, judgments were correct but sensitivity was impaired. Reversals and impairments occurred both with isotropic noise and with orientation-filtered noise. The reversals and impairments could be simulated in a model of motion sensing by adding a stage in which the outputs of motion sensors tuned to 1 and 3 cycles/deg and the same direction of motion were subtracted from one another. The subtraction model predicted and we confirmed in experiments with orientation-filtered noise that if the 1 cycle/deg noise flickered and the 3 cycles/deg noise moved, the 1 cycle/deg noise appeared to move in the opposite direction to the 3 cycles/deg noise even at long durations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subcortical volumetric brain abnormalities have been observed in mood disorders. However, it is unknown whether these reflect adverse effects predisposing to mood disorders or emerge at illness onset. Magnetic resonance imaging was conducted at baseline and after two years in 111 initially unaffected young adults at increased risk of mood disorders because of a close family history of bipolar disorder and 93 healthy controls (HC). During the follow-up, 20 high-risk subjects developed major depressive disorder (HR-MDD), with the others remaining well (HR-well). Volumes of the lateral ventricles, caudate, putamen, pallidum, thalamus, hippocampus and amygdala were extracted for each hemisphere. Using linear mixed-effects models, differences and longitudinal changes in subcortical volumes were investigated between groups (HC, HR-MDD, HR-well). There were no significant differences for any subcortical volume between groups controlling for multiple testing. Additionally, no significant differences emerged between groups over time. Our results indicate that volumetric subcortical brain abnormalities of these regions using the current method appear not to form familial trait markers for vulnerability to mood disorders in close relatives of bipolar disorder patients over the two-year time period studied. Moreover, they do not appear to reduce in response to illness onset at least for the time period studied.