958 resultados para larvae tanks
Resumo:
To investigation of the toxic effects of atrazine on newly hatched larvae and releasing age fry of the Caspian Kutum, Rutilus frisii kutum, the 96h LC50 was determined as 18.53 ppm and 24.95 ppm, respectively. Newly hatched larvae were exposed to three sublethal concentrations of atrazine (1/2LC50, 1/4LC50 and 1/8LC50) for 7 days. Different histopathological alterations were observed in fins and integument, gills, Kidney, digestive system, liver and the brain of the exposed larvae. Fry’s were exposed to one sublethal concentration of atrazine (1/2LC50) for four days, and like the larvae’s, many histopathological alterations were observed in fins and integument, gills, Kidney, digestive system, liver and the brain of the exposed fry’s, too. Also, measurements of the body ions: Na+, K+, Ca2+, Mg2+ and Cl- in atrazine exposed larvae and fry’s compare to control groups showed that atrazine is changed the body ions composition. No significant differences were found in length growth rate, weight growth rate and the condition factor of the atrazine exposed larvae and fry. Immunohistochemical localization of the Na+, K+-ATPase in integumentary and gill ionocytes, showed no differences in dispersion pattern of the ionocytes in atrazine exposed larvae and fry, compare to control group. Measuring the dimensions of the ionocytes and counting the ionocytes showed that atrazine is affecting on ionocytes by mild increasing in size and mild decreasing in number. Ultrastructural studies, using SEM and TEM, showed that atrazine have significant effects on cellular and subcellular properties. It caused necrosis in surface of the pavement cells in branchial epithelium, necrosis in endoplasmic reticulum of the ionocytes and changed the shape of the mitochondria in these cells. Results showed that sublethal concentrations of atrazine were very toxic to larvae and fry of the Rutilus frisii kutum, and at these levels can made some serious histopathological alterations in their tissues. Related to the severe histopathological alterations in osmoregulatory organs, like gill, kidney and digestive system, and the alterations in the body ion composition, it could be concluded that atrazine could interfere with the osmoregulation process of the Rutilus frisii kutum at the early stages of the life history.
Resumo:
Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 mu g L-1) and gene expression patterns were examined 15 d post-fertilization. The expression of several genes in the HIPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), ioclothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TR alpha and TR beta), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 mu g L-1 PFOS. A significant increase in NIS and Diol gene expression was observed at 200 mu g L-1 PFOS exposure, while TG gene expression was down-regulated at 200 and 400 mu g L-1 PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TR alpha and TR beta gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T-4) content remained unchanged, whereas triiodothyronine (T-3) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper studied the seasonal changes of two common microcystins (MCs), MC-RR and -LR, in the commercially important mussel Corbicula fluminea in Lake Chaohu, where there occurred dense cyanobacteria. Occasional measurements were also made for MC in the mussel Arconaia lanceolat, the oligochaete Limnodilus hoffineisteri and the insect larva Chironomus sp. Mean MC of C. fluminea was much higher in hepatopancreas than in intestine and foot. Our study is the first to report accumulation of MCs in oligochaetes and aquatic insect larvae. The hi-h contents of MCs in the insect larvae suggest a great possibility for the transfer of MCs to benthos-feeding omnivores like common carp. According to the provisional standard by the WHO, 28.6% of the collected C. fluminea were harmful for human consumption, assuming a daily consumption of 300 by a person. It is recommended that edible mussels should not be collected for human consumption during toxic cyanobacterial blooms in Lake Chaohu.
Resumo:
Development of embryos and larvae in Ancherythroculter nigrocauda Yih et Woo (1964) and effects of delayed first feeding on larvae were observed after artificial fertilization. The fertilized eggs were incubated at an average temperature of 26.5 degrees C (range: 25.7-27) and the larvae reared at temperatures ranging from 21.8 to 28 degrees C. First cleavage was at 50 min, epiboly began at 7 h 5 min, heartbeat reached 72 per min at 24 h 40 min and hatching occurred at 43 h 15 min after insemination. Mean total length of newly hatched larvae was 4.04 +/- 0.03 mm (n = 15). A one-chambered gas bladder was observed at 70 h 50 min, two chambers occurred at 15 days, and scales appeared approximately 30 days after hatching. Larvae began to feed exogenously at day 4 post-hatch at an average temperature of 24 degrees C. Food deprivation resulted in a progressive atrophy of skeletal muscle fibres, deterioration of the larval digestive system and cessation of organ differentiation. Larval growth under food deprivation was significantly affected by the time of first exogenous feeding. Starved larvae began to shrink, with negative growth from day 6 post-hatch. The point of no return (PNR) was reached at day 11 after hatching. Mortality of starved larvae increased sharply from day 12 after hatching.
Resumo:
The early life-history of Chinese rock carp Procypris rabaudi was investigated during a 56-day rearing period: 318 artificially propagated P. rabaudi larvae were reared throughout metamorphosis in a small-scale recirculation system (345 L water volume, 10 x 18 L rearing tanks, 150 L storage and filter compartment with bioballs, 20-30 larvae L-1) at the Institute of Hydrobiology, Wuhan, Hubei Province, China. The newly hatched larvae had an initial total length of 8.93 +/- 0.35 mm SD (n = 10) at 3 days post-hatch and reached an average total length of 33.29 mm (+/- 1.88 mm SD, n = 10) 56 days after hatching. Length increment averaged 0.45 mm day(-1), resulting in a mean growth of 24.4 mm within the 56-day period. High mortality rates of up to 92% derived from an introduced fungus infection and subsequent treatment stress with malachite green. Our results indicate that Chinese rock carp can be raised successfully from artificially fertilized eggs. We therefore assume this species to be a candidate for commercial aquaculture.
Resumo:
The present research studied the effects of age and dietary protein level on pepsin, trypsin and amylase activity and their mRNA level in Petteobagrus fulvidraco larvae from 3 to 26 days after hatch (DAH). Three DAH larvae were fed three isoenergetic diets, containing 42.8% (CP 43), 47.3% (CP 47) and 52.8% (CP 53) crude protein. Live food (newly hatched Artemia, unenriched) was included as a control. The effects of age on enzyme activity and mRNA were as follows: pepsin and trypsin activity in all treatment groups showed a significant (P < 0.05) increase at the beginning and decrease later although the timing of decrease was not the same among treatment groups and between the digestive enzymes. Pepsin and trypsin mRNA level followed the pattern of their respective enzyme changes. Age significantly affected amylase activity (P < 0.05) while age had no effect on amylase mRNA during the experimental period. The four diets significantly (P < 0.05) affected activity and mRNA level of pepsin and trypsin. Diets did not affect amylase activity or mRNA level. These results suggest that the effects of age on pepsin and trypsin gene expressions are at the transcriptional level. Dietary protein level does affect pepsin and trypsin gene expression in the early life of P. fulvidraco. There were no transcriptional effects on amylase gene expression. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In recent years, much progress has been made in the rearing of fish larvae fed only artificial diets. A preliminary study was made in an attempt to evaluate the effects of live food and formulated diets on survival, growth and body protein content of first-feeding larvae of Plelteobagrus fulvidraco. Three test diets varying in protein level were formulated: Feed 1 containing 45% protein, Feed 2 with 50% protein and Feed 3 with 55% protein. Larvae fed live food (newly hatched Artemia, unenriched) were the control. The experiment started 3 days post-hatch and lasted for 23 days. At the end of the 23-day trial, survival was best in the control group (65.6%) whereby the final body weight and specific growth rate (SGR) were significantly lower than those in the test feed groups. At the same time, coefficients of variation for SGR and final body weight in the test groups were significantly higher than those in the control. Whole body protein content in all treatments showed a similar tendency during development: significantly higher 3 days post-hatch, then decreasing significantly, and then increasing unstatistically 10 days post-hatch. All results suggest that live food is still better for first-feeding larvae of P. fulvidraco, since live food leads to healthier larvae growth.
Resumo:
Gastric mills were examined from 98 early juvenile Chinese mitten crabs (Eriocheir sinensis) from experimental tanks. Recognizable food items were macrophytes, algae, oligochaetes, and detritus; their percent frequencies of occurrence were 94.6%, 86.5%, 10.7%, and 18.3%, respectively. The crabs had a diet feeding rhythm.
Resumo:
A settlement inhibition assay using barnacle cyprid larvae, Balanus amphitrite, was developed with Cd2+ and phenol as standard reference toxicants. Mean percentage settlement of cyprid larvae showed a progressive reduction with increasing concentrations of Cd2+ and phenol. A significant reduction in settlement was found when cyprids were exposed to 0.1 mgL(-1) Cd2+ or 10 mgL(-1) phenol. The assay was used to assess the sublethal toxicity of three oil dispersants (Vecom B-1425 GL, Norchem OSD-570 and Corexit 9905) commonly used in Hong Kong waters. Results of this investigation show that the barnacle settlement inhibition assay can be incorporated into the battery of tests currently available for ecotoxicological assessment of marine contaminants. (C) 1997 Elsevier Science Ltd.
Resumo:
The effects of sublethal concentrations of phenol and cadmium on the phototactic responses of the stage II nauplii of the barnacle Balanus amphitrite were investigated. Increased toxicant concentrations caused a reduction in phototactic responses. Balanus amphitrite nauplii exposed to nominal phenol concentrations of 100 ppm and higher for 1-12 h failed to exhibit phototactic responses, while longer exposure times of 24 and 48 h reduced the lowest observable effect concentration (LOECs) to 80 and 60 ppm, respectively. For cadmium, the LOECs, based on nominal concentrations, for B. amphitrite following 1, 6, 12, 24, and 48 h exposures were 20, 4.5, 4.0, 1, and 0.75 ppm, respectively. The LOECs can be significantly reduced by increasing the duration of exposure to the toxicants. A good relationship exists between the phototactic response and toxicant concentration as well as exposure time. Results of this study indicate that the toxicant-induced reduction in phototactic responses of barnacle larvae can be used in a sensitive, rapid screening test for ecotoxicological assessments. (C) 1997 by John Wiley & Sons, Inc.
Resumo:
Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic– pituitary–thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 lg L 1) and gene expression patterns were examined 15 d post-fertilization. The expression of several genes in the HPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), iodothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TRa and TRb), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 lg L 1 PFOS. A significant increase in NIS and Dio1 gene expression was observed at 200 lg L 1 PFOS exposure, while TG gene expression was down-regulated at 200 and 400 lg L 1 PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TRa and TRb gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T4) content remained unchanged, whereas triiodothyronine (T3) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones.
Changes in RNA, DNA, protein contents and growth of turbot Scophthalmus maximus larvae and juveniles
Resumo:
The growth potential of turbot Scophthalmus maximus larvae and juveniles was studied using nucleic acid-based indices and protein variables. The experiment was carried out from 4 to 60 days post hatching (dph). A significant increase in instantaneous growth rate during metamorphosis and retarded growth rate during post-metamorphic phase were observed. Ontogenetic patterns of DNA, RNA and protein all showed developmental stage-specific traits. The RNA:DNA ratio decreased up to 12 dph, then increased rapidly till 19 dph and fluctuated until 35 dph followed by a decline to the end. The RNA:DNA ratio was positively correlated with growth rate of juveniles during the post-metamorphic phase, whereas this ratio was not a sensitive indicator of growth during the pre-metamorphic phase and metamorphosis. The protein:DNA ratio showed a similar tendency to the RNA:DNA ratio. Changes of DNA content and protein:DNA ratio revealed that growth of S. maximus performed mainly by hyperplasia from 4 to 12 dph and hypertrophy until 21 dph during the pre-metamorphic larval phase. Growth was dominantly hypertrophical from the early- to mid-metamorphosing phase and hyperplastic thereafter. The results show that the DNA content and protein:DNA ratio can evaluate growth rates of larval and juvenile S. maximus on a cellular level.
Resumo:
The ontogenetic development of the digestive enzymes amylase, lipase, trypsin, and alkaline phosphatase and the effect of starvation in miiuy croaker Miichthys miiuy larvae were studied. The activities of these enzymes were detected prior to exogenous feeding, but their developmental patterns differed remarkably. Trypsin activity continuously increased from 2 days after hatching (dah), peaked on 20 dah, and decreased to 25 dah at weaning. Alkaline phosphatase activity oscillated at low levels within a small range after the first feeding on 3 dah. In contrast, amylase and lipase activities followed the general developmental pattern that has been characterized in fish larvae, with a succession of increases or decreases. Amylase, lipase, and trypsin activities generally started to increase or decrease at transitions from endogenous to exogenous feeding or diet changes, suggesting that these enzymatic activities can be modulated by feeding modes. The activities of all the enzymes remained stable from 25 dah onwards, coinciding with the formation of gastric glands and pyloric caecum. These results imply that specific activities of these enzymes underwent changes due to morphological and physiological modifications or diet shift during larval development but that they became stable after the development of the digestive organs and associated glands was fully completed and the organs/glands functioned. Trypsin and alkaline phosphatase were more sensitive to starvation than amylase and lipase because delayed feeding up to 2 days after mouth opening was able to adversely affect their activities. Enzyme activities did not significantly differ among feeding groups during endogenous feeding; however, all activities were remarkably reduced when delayed feeding was within 3 days after mouth opening. Initiation of larvae feeding should occur within 2 days after mouth opening so that good growth and survival can be obtained in the culture.
Resumo:
To determine the optimal larval density for hatchery culture of the clam Meretrix meretrix, experiments with stocking densities of 5, 10, 20, 40 and 60 larvae ml(-1) were designed, which included the developmental stages from D-veliger to 8 days postsettlement. Shell length, settlement time and survival rate of the larvae were recorded. Results showed that, at each sampling time, larvae reared at the highest density had the smallest mean size, whereas larvae reared at the lowest density had the largest mean size. Statistical differences in mean shell length at different stocking densities appeared from day 2, and greater differences occurred with increased culture time. Specific growth rate (SGR) in the rapid growing stage (day 0-3) was negatively correlated with density; however, no correlation was found between SGR and density in the slow growing stage (days 3-7). Settlement time was prolonged and shell length of settled larvae decreased as density increased. However, larval survival rate (74.8-79.1%) was independent of stocking density. Results showed that a high stocking density, in the designated range, is feasible for larval culture of the clam M. meretrix. However, for large-scale culture, in the interest of costs and safety, a stocking density of 10-20 larvae ml(-1) is recommended. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Commercial cultivation of the dioecious brown macroalga Hizikia fusiformis (Harvey) Okamura in East Asia depends on the supply of young seedlings from regenerated holdfasts or from wild population. Recent development of synchronized release of male and female gametes in tumble culture provides a possibility of mass production of young seedlings via sexual reproduction. In this paper, we demonstrate that controlled fertilization can be efficiently realized in ambient light and temperature in a specially designed raceway tank in which the sperm-containing water has been recirculated. The effective fertilization time of eggs by sperm was found to be within six hours. Fast growth and development of the young seedlings relied on the presence of water currents. Velocity tests demonstrated that young seedlings of 2-3 mm in length could withstand a water current of 190 cm s(-1) stop without detachment. Culture experiments at 24 h postfertilization showed that elongation of both the seedlings and their rhizoids were not hampered by high irradiance up to 600 mu mol photons m(-2) stop s(-1) stop. However, growth was slightly retarded if cultured at a temperature of 16 degrees C compared to other culture temperatures of 22, 25 and 29 degrees C. No seedling detachment was observed after transfer of the young seedlings to raft cultivation in the sea after one and 1.5 months post-fertilization, indicating the feasibility of obtaining large quantity of seedlings in such a system.