931 resultados para large data sets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Gene expression analysis has emerged as a major biological research area, with real-time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely used techniques for expression profiling of selected genes. In order to obtain results that are comparable across assays, a stable normalization strategy is required. In general, the normalization of PCR measurements between different samples uses one to several control genes (e.g. housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the control genes is of utmost importance, yet there is not a generally accepted standard technique for screening a large number of candidates and identifying the best ones. RESULTS: We propose a novel approach for scoring and ranking candidate genes for their suitability as control genes. Our approach relies on publicly available microarray data and allows the combination of multiple data sets originating from different platforms and/or representing different pathologies. The use of microarray data allows the screening of tens of thousands of genes, producing very comprehensive lists of candidates. We also provide two lists of candidate control genes: one which is breast cancer-specific and one with more general applicability. Two genes from the breast cancer list which had not been previously used as control genes are identified and validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/~vpopovic/research/ CONCLUSION: We proposed a new method for identifying candidate control genes for RT-QPCR which was able to rank thousands of genes according to some predefined suitability criteria and we applied it to the case of breast cancer. We also empirically showed that translating the results from microarray to PCR platform was achievable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many applications in several domains such as telecommunications, network security, large scale sensor networks, require online processing of continuous data lows. They produce very high loads that requires aggregating the processing capacity of many nodes. Current Stream Processing Engines do not scale with the input load due to single-node bottlenecks. Additionally, they are based on static con?gurations that lead to either under or over-provisioning. In this paper, we present StreamCloud, a scalable and elastic stream processing engine for processing large data stream volumes. StreamCloud uses a novel parallelization technique that splits queries into subqueries that are allocated to independent sets of nodes in a way that minimizes the distribution overhead. Its elastic protocols exhibit low intrusiveness, enabling effective adjustment of resources to the incoming load. Elasticity is combined with dynamic load balancing to minimize the computational resources used. The paper presents the system design, implementation and a thorough evaluation of the scalability and elasticity of the fully implemented system.