876 resultados para karyotype evolution of lizards
Resumo:
Many blood feeders use adenine nucleotides as cues for locating blood meal. Structure-activity relationship of adenine nucleotides as phagostimulants varies between closely-related species of blood feeders. It is suggested that a preexisting diverse pool of nucleotide-binding proteins present in all living cells, serves as a source of receptor proteins for the gustatory receptors involved in blood detection. It is proposed that the selection of any such nucleotide-binding protein is random.
Resumo:
This review takes into account primarily the work done in our laboratory with insects from the major Holometabola orders. Only the most significant data for each insect will be presented and a proposal on the evolution of Holometabola insect digstive systems will be advanced.
Resumo:
Modification of the immune response to schistosomal infection in children or offspring born to mother R infected with Schistosoma mansoni has been demonstrated in human and in experimental schistosomiasis. One of the hypothesis to explain this fact could be the transfer of circulating antigens and antibodies from mother to foetus through the placenta or from mother to child by milk. The results of this spontaneous transference are controversial in the literature. In an attempt to investigate these questions, we studied one hundred and twenty offspring (Swiss mice), sixty born to infected-mothers (group A) and sixty born to non-infected mothers (group B). These were percutaneously infected with 50 cercariae/mouse, and divided in six sub-groups (20 mice/sub-group), according to the following schedule: after birth (sub-groups A.I and B.I), 10 days old (sub-groups A.II and B.II) and 21 days old (sub-groups A.III and B.III). After the exposure period, the young mice returned to their own mothers for nursing. Six weeks later, the mice were killed. We obtained the following results: 1) There is transference of antibody to cercariae (CAP), adult worms (SWAP) and egg antigens (SEA) from the infected mothers to the offspring, probably through placenta and milk; 2) Offspring born to infected mothers exhibit much less coagulative hepatic necrosis and show a lower number of eggs in the small intestine and a less intense and predominant exsudative stage of the hepatic granulomas when compared with the exsudative-productive stage of the control groups. The findings suggest that congenital and nursing factors can interfere on the development of the schistosomiasis infection, causing an hyporesponse to the eggs.
Resumo:
BACKGROUND: Cancer/testis (CT) genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. RESULTS: To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes) genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. CONCLUSION: Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.
Resumo:
Introduction: Drug prescription is difficult in ICUs as prescribers are many, drugs expensive and decisions complex. In our ICU, specialist clinicians (SC) are entitled to prescribe a list of specific drugs, negotiated with intensive care physicians (ICP). The objective of this investigation was to assess the 5-year evolution of quantity and costs of drug prescription in our adult ICU and identify the relative costs generated by ICP or SC. Methods: Quantities and costs of drugs delivered on a quarterly basis to the adult ICU of our hospital between 2004 and 2008 were extracted from the pharmacy database by ATC code, an international five-level classification system. Within each ATC first level, drugs with either high level of consumption, high costs or large variations in quantities and costs were singled out and split by type of prescriber, ICP or SC. Cost figures used were drug purchase prices by the hospital pharmacy. Results: Over the 5-year period, both quantities and costs of drugs increased, following a nonsteady, nonparallel pattern. Four ATC codes accounted for 80% of both quantities and costs, with ATC code B (blood and haematopoietic organs) amounting to 63% in quantities and 41% in costs, followed by ATC code J (systemic anti-infective, 20% of the costs), ATC code N (nervous system, 11% of the costs) and ATC code C (cardiovascular system, 8% of the costs). Prescription by SC amounted to 1% in drug quantities, but 19% in drug costs. The rate of increase in quantities and costs was seven times larger for ICP than for SC (Figure 1 overleaf ). Some peak values in costs and quantities were related to a very limited number of patients. Conclusions: A 5-year increase in quantities and costs of drug prescription in an ICU is a matter of concern. Rather unexpectedly, total costs and cost increases were generated mainly by ICP. A careful follow-up is necessary to try influencing this evolution through an institutional policy co-opted by all professional categories involved in the process.
Resumo:
INTRODUCTION: Therapeutic hypothermia (TH) is often used to treat out-of-hospital cardiac arrest (OHCA) patients who also often simultaneously receive insulin for stress-induced hyperglycaemia. However, the impact of TH on systemic metabolism and insulin resistance in critical illness is unknown. This study analyses the impact of TH on metabolism, including the evolution of insulin sensitivity (SI) and its variability, in patients with coma after OHCA. METHODS: This study uses a clinically validated, model-based measure of SI. Insulin sensitivity was identified hourly using retrospective data from 200 post-cardiac arrest patients (8,522 hours) treated with TH, shortly after admission to the intensive care unit (ICU). Blood glucose and body temperature readings were taken every one to two hours. Data were divided into three periods: 1) cool (T <35°C); 2) an idle period of two hours as normothermia was re-established; and 3) warm (T >37°C). A maximum of 24 hours each for the cool and warm periods was considered. The impact of each condition on SI is analysed per cohort and per patient for both level and hour-to-hour variability, between periods and in six-hour blocks. RESULTS: Cohort and per-patient median SI levels increase consistently by 35% to 70% and 26% to 59% (P <0.001) respectively from cool to warm. Conversely, cohort and per-patient SI variability decreased by 11.1% to 33.6% (P <0.001) for the first 12 hours of treatment. However, SI variability increases between the 18th and 30th hours over the cool to warm transition, before continuing to decrease afterward. CONCLUSIONS: OCHA patients treated with TH have significantly lower and more variable SI during the cool period, compared to the later warm period. As treatment continues, SI level rises, and variability decreases consistently except for a large, significant increase during the cool to warm transition. These results demonstrate increased resistance to insulin during mild induced hypothermia. Our study might have important implications for glycaemic control during targeted temperature management.
Resumo:
We use basic probability theory and simple replicable electronic search experiments to evaluate some reported “myths” surrounding the origins and evolution of the QWERTY standard. The resulting evidence is strongly supportive of arguments put forward by Paul A. David (1985) and W. Brian Arthur (1989) that QWERTY was path dependent with its course of development strongly influenced by specific historical circumstances. The results also include the unexpected finding that QWERTY was as close to an optimal solution to a serious but transient problem as could be expected with the resources at the disposal of its designers in 1873.
Resumo:
The question of why some social systems have evolved close inbreeding is particularly intriguing given expected short- and long-term negative effects of this breeding system. Using social spiders as a case study, we quantitatively show that the potential costs of avoiding inbreeding through dispersal and solitary living could have outweighed the costs of inbreeding depression in the origin of inbred spider sociality. We further review the evidence that despite being favored in the short term, inbred spider sociality may constitute in the long run an evolutionary dead end. We also review other cases, such as the naked mole rats and some bark and ambrosia beetles, mites, psocids, thrips, parasitic ants, and termites, in which inbreeding and sociality are associated and the evidence for and against this breeding system being, in general, an evolutionary dead end.
Resumo:
Sex-dependent selection often leads to spectacularly different phenotypes in males and females. In species in which sexual dimorphism is not complete, it is unclear which benefits females and males derive from displaying a trait that is typical of the other sex. In barn owls (Tyto alba), females exhibit on average larger black eumelanic spots than males but members of the two sexes display this trait in the same range of possible values. In a 12-year study, we show that selection exerted on spot size directly or on genetically correlated traits strongly favoured females with large spots and weakly favoured males with small spots. Intense directional selection on females caused an increase in spot diameter in the population over the study period. This increase is due to a change in the autosomal genes underlying the expression of eumelanic spots but not of sex-linked genes. Female-like males produced more daughters than sons, while male-like females produced more sons than daughters when mated to a small-spotted male. These sex ratio biases appear adaptive because sons of male-like females and daughters of female-like males had above-average survival. This demonstrates that selection exerted against individuals displaying a trait that is typical of the other sex promoted the evolution of specific life history strategies that enhance their fitness. This may explain why in many organisms sexual dimorphism is often not complete.