899 resultados para information bottleneck method
Resumo:
Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.
Resumo:
Information communication technology (IC T) has invariably brought about fundamental changes in the way in which libraries gather. preserve and disseminate information. The study was carried out with an aim to estimate and compare the information seeking behaviour (ISB) of the academics of two prominent universities of Kerala in the context of advancements achieved through ICT. The study was motivated by the fast changing scenario of libraries with the proliferation of many high tech products and services. The main purpose of the study was to identify the chief source of information of the academics, and also to examine academics preference upon the form and format of information source. The study also tries to estimate the adequacy of the resources and services currently provided by the libraries.The questionnaire was the central instrument for data collection. An almost census method was adopted for data collection engaging various methods and tools for eliciting data.The total population of the study was 957, out of which questionnaire was distributed to 859 academics. 646 academics responded to the survey, of which 564 of them were sound responses. Data was coded and analysed using Statistical Package for Social Sciences (SPSS) software and also with the help of Microsofl Excel package. Various statistical techniques were engaged to analyse data. A paradigm shift is evident by the fact that academies push themselves towards information in internet i.e. they prefer electronic source to traditional source and the very shift is coupled itself with e-seeking of information. The study reveals that ISB of the academics is influenced priman'ly by personal factors and comparative analysis shows that the ISB ofthc academics is similar in both universities. The productivity of the academics was tested to dig up any relation with respect to their ISB, and it is found that productivity of the academics is extensively related with their ISB. Study also reveals that the users ofthe library are satisfied with the services provided but not with the sources and in conjunction, study also recommends ways and means to improve the existing library system.
Resumo:
In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.
Resumo:
The paper discusses the use of online information resources for organising knowledge in library and information centres in Cochin University of Science and Technology (CUSAT). The paper discusses the status and extent of automation in CUSAT library. The use of different online resources and the purposes for which these resources are being used, is explained in detail. Structured interview method was applied for collecting data. It was observed that 67 per cent users consult online resources for assisting knowledge organisation. Library of Congress catalogue is the widely used (100 per cent) online resource followed by OPAC of CUSAT and catalogue of British Library. The main purposes for using these resources are class number building and subject indexing
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).
Resumo:
This research investigates what information German Fairtrade coffee consumers search for during pre-purchase information seeking and to what extent information is retrieved. Furthermore, the sequence of the information search as well as the degree of cognitive involvement is highlighted. The role of labeling, the importance of additional ethical information and its quality in terms of concreteness as well as the importance of product price and organic origin are addressed. A set of information relevant to Fairtrade consumers was tested by means of the Information Display Matrix (IDM) method with 389 Fairtrade consumers. Results show that prior to purchase, information on product packages plays an important role and is retrieved rather extensively, but search strategies that reduce the information processing effort are applied as well. Furthermore, general information is preferred over specific information. Results of two regression analyses indicate that purchase decisions are related to search behavior variables rather than to socio-demographic variables and purchase motives. In order to match product information with consumers’ needs, marketers should offer information that is reduced to the central aspects of Fairtrade.
Resumo:
A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.
Resumo:
A new information-theoretic approach is presented for finding the pose of an object in an image. The technique does not require information about the surface properties of the object, besides its shape, and is robust with respect to variations of illumination. In our derivation, few assumptions are made about the nature of the imaging process. As a result the algorithms are quite general and can foreseeably be used in a wide variety of imaging situations. Experiments are presented that demonstrate the approach registering magnetic resonance (MR) images with computed tomography (CT) images, aligning a complex 3D object model to real scenes including clutter and occlusion, tracking a human head in a video sequence and aligning a view-based 2D object model to real images. The method is based on a formulation of the mutual information between the model and the image called EMMA. As applied here the technique is intensity-based, rather than feature-based. It works well in domains where edge or gradient-magnitude based methods have difficulty, yet it is more robust than traditional correlation. Additionally, it has an efficient implementation that is based on stochastic approximation. Finally, we will describe a number of additional real-world applications that can be solved efficiently and reliably using EMMA. EMMA can be used in machine learning to find maximally informative projections of high-dimensional data. EMMA can also be used to detect and correct corruption in magnetic resonance images (MRI).
Resumo:
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.
Resumo:
This paper describes a method to achieve the most relevant contours of an image. The presented method proposes to integrate the information of the local contours from chromatic components such as H, S and I, taking into account the criteria of coherence of the local contour orientation values obtained from each of these components. The process is based on parametrizing pixel by pixel the local contours (magnitude and orientation values) from the H, S and I images. This process is carried out individually for each chromatic component. If the criterion of dispersion of the obtained orientation values is high, this chromatic component will lose relevance. A final processing integrates the extracted contours of the three chromatic components, generating the so-called integrated contours image
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
This paper describes the basis of citation auctions as a new approach to selecting scientific papers for publication. Our main idea is to use an auction for selecting papers for publication through - differently from the state of the art - bids that consist of the number of citations that a scientist expects to receive if the paper is published. Hence, a citation auction is the selection process itself, and no reviewers are involved. The benefits of the proposed approach are two-fold. First, the cost of refereeing will be either totally eliminated or significantly reduced, because the process of citation auction does not need prior understanding of the paper's content to judge the quality of its contribution. Additionally, the method will not prejudge the content of the paper, so it will increase the openness of publications to new ideas. Second, scientists will be much more committed to the quality of their papers, paying close attention to distributing and explaining their papers in detail to maximize the number of citations that the paper receives. Sample analyses of the number of citations collected in papers published in years 1999-2004 for one journal, and in years 2003-2005 for a series of conferences (in a totally different discipline), via Google scholar, are provided. Finally, a simple simulation of an auction is given to outline the behaviour of the citation auction approach
Resumo:
This participatory action research was based on a experience of educational intervention on La Cruz and Bello Oriente (Manrique-Medellin), a marginal zone in the northeastern part of the Commune 3 in Medellin,. Colombia. In this marginal sector, psychosocial problems seem to be associated to limited educational and employment opportunities, domestic violence, illegal armed forces, sexual abuse, social discrimination, and lack of adequate public services, among others. All these are also considered as risk factors for drug dependency. We used a structured interview designed to identify leisure tendencies, use of free time, and tendencies in recreational activities. Data from the interview were triangulated with information collected by observation and in field work and used to build a psycho-pedagogic method based on play and leisure activities. The effects of the use of this educational intervention on the satisfaction of human needs were analyzed in light of the theory of Manfred Max-Neef. Results point out the need for new educational strategies aimed to promote creativity, solidarity, mental, physical and social health, more enthusiasm and motivation and in general, positive attitudes that help prevent drug dependence.