979 resultados para industrial processes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The toothbrush is identified as one of the most importants inventions in human history. Most of them are made by polypropylene, a recyclable polymer. Some are made of polypropylene and polyethylene leftovers from others industrial processes. However, the toothbrushes are discarded incorrectly and end up in landfills, which could be avoided by using a material and design suitable for the manufacture of the product. This study aimed, based on research, develop and design a toothbrush model with great features. For the conception of the prototype, was used rapid prototyping technologies. With the intention of improving the product quality, was created an ergonomic, sustainable and environmentally friendly model, seeking maximally reduce the generation of waste and environmental damages. The solution adopted was the use of "interchangeable head", which can be discarded after their useful life, keeping the rest of the body.
Resumo:
The problem of proper disposal of solid waste generated in different industrial processes is one of worldwide environmental concerns nowadays. Thus, this study aimed to establish a new alternative for the disposal of two agro-industrial residues employing them to produce particleboard for different purposes in building construction. The focus was given to the reuse of the sugarcane bagasse (SB) originated during the processing of Saccharum officinarum for sugar and ethanol production, and bamboo stem leaves of Dendrocalamus giganteus(BB). For this, six particleboards were produced in the following compositions: with 100% SB, 75% SB + 25% BB, 50% SB+50% BB, 40% SB +60 BB, 25% SB+ 75% BB and 100% BB in the total mass of the composites. The particleboards physical characterization followed Brazilian Standard ABNT NBR 14810-3 to density, moisture content and water absorption. Results showed these raw materials are compatible to particleboard production.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
This study aimed to characterize the physical and chemical composition of ten items of arracacha grown in the municipality of São Manuel for the 2009 harvest. In the roots of the clones BGH (4560, 5741, 5744, 5746, 5747, 6414, 6513, 6525 and 7609) and the cultivar Amarela de Senador Amaral the characteristics evaluated were: color (L *, a * and b *) and moisture, ash, crude fiber, raw grease, protein, reducing sugars, total sugars and starch. After obtaining the data, an analysis was performed for the variance of test F and comparisons between the means made by the Tukey test at 5% probability. There was no significant difference to the results of luminosity (L *) while BGH 6414 and BGH 5744 showed the highest values for chroma and * BGH 5741, BGH 6414, BGH 7609, 'Amarela de Senador Amaral' BGH 5747 presented the highest chroma values for b *. Clones BGH 7609 and BGH 6414 showed significantly higher levels of dry matter and with the potential yield of agro-industrial processes it would be best suited in the form of frying. The materials that showed significantly larger amounts of ash were BGH 6525, BGH 5747, 'Amarela de Senador Amaral ", BGH 4560, BGH 5746, BGH 6513. Regarding the contents of fatty matter BGH 6525, BGH 5741 and BGH 5744 showed the highest levels. The results of BGH 7609 showed crude fiber significantly higher than the other materials tested, it can be used in diets composed of fibers. BGH 4560 and cultivar had the highest crude protein. BGH 5741 showed the lowest reducing sugar content among the clones, but not significantly different from results found for the cultivar. All clones showed total sugar levels were higher in the cultivar, which may have more flavor. BGH 5741, BGH 5746, BGH 6525 and BGH 6513 showed significantly higher starch content than the cultivar Amarela de Senador Amaral. From these results we conclude that the clones have similar color characteristics, and are potentially a nutritionally adequate substitute for the cultivar.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work studies and develops a machine automation for tyre truing. It is discussed industry development, industrial processes automation, tyre-recycling process, advantages of tyre reuse for preservation of the environment and probable gains from the automation of part of the tyre-recycling process. In this text, it is detailed the work done to configure, program and optimize the truing process through automation components as CNC, PLC and drives. Tests and simulations are performed to determine the payback necessary period in productivity and profit gains
Resumo:
This paper addresses the three-phase induction motor by a thermal analysis of its operation, under the gaze of the standards of the Brazilian Association of Technical Standards that deal with working arrangements (operating cycles) defined by appropriate tests and for each use of the motor basis of this study, emphasizing especially the fact of the first three cycles are the cycles with greater possibilities of use for scaling a three-phase induction motor for the main industrial processes, will also be made an analysis of the reasons why the three-phase induction motors have a loss of power at altitudes above 1000 m above sea level and some methods of how to define how a three phase induction motor can be used in one of the first three working arrangements
Resumo:
This work studies and develops a machine automation for tyre truing. It is discussed industry development, industrial processes automation, tyre-recycling process, advantages of tyre reuse for preservation of the environment and probable gains from the automation of part of the tyre-recycling process. In this text, it is detailed the work done to configure, program and optimize the truing process through automation components as CNC, PLC and drives. Tests and simulations are performed to determine the payback necessary period in productivity and profit gains
Resumo:
This paper addresses the three-phase induction motor by a thermal analysis of its operation, under the gaze of the standards of the Brazilian Association of Technical Standards that deal with working arrangements (operating cycles) defined by appropriate tests and for each use of the motor basis of this study, emphasizing especially the fact of the first three cycles are the cycles with greater possibilities of use for scaling a three-phase induction motor for the main industrial processes, will also be made an analysis of the reasons why the three-phase induction motors have a loss of power at altitudes above 1000 m above sea level and some methods of how to define how a three phase induction motor can be used in one of the first three working arrangements
Resumo:
Nuclear magnetic resonance (NMR) is one of the most versatile analytical techniques for chemical, biochemical and medical applications. Despite this great success, NMR is seldom used as a tool in industrial applications. The first application of NMR in flowing samples was published in 1951. However, only in the last ten years Flow NMR has gained momentum and new and potential applications have been proposed. In this review we present the historical evolution of flow or online NMR spectroscopy and imaging, and current developments for use in the automation of industrial processes.
Resumo:
Reactive Sputter Magnetron (RSM) is a widely used technique to thin films growing of compounds both, in research laboratories and in industrial processes. The nature of the deposited compound will depend then on the nature of the magnetron target and the nature of the ions generated in the plasma. One important aspect of the problem is the knowledge of the evolution of the film during the process of growing itself. In this work, we present the design, construction of a chamber to be installed in the Huber goniometer in the XRD2 line of LNLS in Campinas, which allows in situ growing kinetic studies of thin films.
Resumo:
The bioproduction of materials and energy from renewable sources (industrial biotechnology) is getting more and more interest in order to improve environmental sustainability of chemical industrial processes and to decrease their dependence from oil. Anaerobic digestion of organic waste matrices (agricultural and industrial wastes, organic fraction of municipal wastes, sewage sludges etc.) may play an important role in the implementation of industrial biotechnology being a well developed strategy in the valorization of complex matrices, as it can mineralize them while producing bioenergy in the form of a biogas rich in methane. In this research the potential of anaerobic digestion in the treatment of polluted sewage sludge was studied by developing three set of anaerobic microcosms with sludges differently contaminated by xenobiotic compounds. The effect of different incubating temperatures and of exogenous carbon and vitamine sources was investigated along with the role of the occurring microbial populations in the pollutant degradation activity. So, while confirming the potential of anaerobic digestion for the biomethanization of sewage sludges, this work proved the effectiveness of this technology in the removal of pollutants too. Moreover, since the degradation of lignocellulose appears to be a limiting step in the anaerobic treatment of a wide range of biomass, the possibility of optimizing anaerobic digestion of lignocellulosic substrates was also studied. To this aim a research was carried out at the BOKUUniversity of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, IFA - Tulln, where mixed cellulolytic cultures were isolated from biogas plants while assessing the metabolic pathway leading to cellulose degradation and verifying their capability to grow on lignocellulose too, proving that on the long term such bacterial cultures could be used as inoculum in order to improve the hydrolysis of lignocellulose in anaerobic digestion plants.
Resumo:
The increasing aversion to technological risks of the society requires the development of inherently safer and environmentally friendlier processes, besides assuring the economic competitiveness of the industrial activities. The different forms of impact (e.g. environmental, economic and societal) are frequently characterized by conflicting reduction strategies and must be holistically taken into account in order to identify the optimal solutions in process design. Though the literature reports an extensive discussion of strategies and specific principles, quantitative assessment tools are required to identify the marginal improvements in alternative design options, to allow the trade-off among contradictory aspects and to prevent the “risk shift”. In the present work a set of integrated quantitative tools for design assessment (i.e. design support system) was developed. The tools were specifically dedicated to the implementation of sustainability and inherent safety in process and plant design activities, with respect to chemical and industrial processes in which substances dangerous for humans and environment are used or stored. The tools were mainly devoted to the application in the stages of “conceptual” and “basic design”, when the project is still open to changes (due to the large number of degrees of freedom) which may comprise of strategies to improve sustainability and inherent safety. The set of developed tools includes different phases of the design activities, all through the lifecycle of a project (inventories, process flow diagrams, preliminary plant lay-out plans). The development of such tools gives a substantial contribution to fill the present gap in the availability of sound supports for implementing safety and sustainability in early phases of process design. The proposed decision support system was based on the development of a set of leading key performance indicators (KPIs), which ensure the assessment of economic, societal and environmental impacts of a process (i.e. sustainability profile). The KPIs were based on impact models (also complex), but are easy and swift in the practical application. Their full evaluation is possible also starting from the limited data available during early process design. Innovative reference criteria were developed to compare and aggregate the KPIs on the basis of the actual sitespecific impact burden and the sustainability policy. Particular attention was devoted to the development of reliable criteria and tools for the assessment of inherent safety in different stages of the project lifecycle. The assessment follows an innovative approach in the analysis of inherent safety, based on both the calculation of the expected consequences of potential accidents and the evaluation of the hazards related to equipment. The methodology overrides several problems present in the previous methods proposed for quantitative inherent safety assessment (use of arbitrary indexes, subjective judgement, build-in assumptions, etc.). A specific procedure was defined for the assessment of the hazards related to the formations of undesired substances in chemical systems undergoing “out of control” conditions. In the assessment of layout plans, “ad hoc” tools were developed to account for the hazard of domino escalations and the safety economics. The effectiveness and value of the tools were demonstrated by the application to a large number of case studies concerning different kinds of design activities (choice of materials, design of the process, of the plant, of the layout) and different types of processes/plants (chemical industry, storage facilities, waste disposal). An experimental survey (analysis of the thermal stability of isomers of nitrobenzaldehyde) provided the input data necessary to demonstrate the method for inherent safety assessment of materials.