1000 resultados para incompressible flow
Resumo:
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10-20% for our soils, which was consistent with the model's prediction, given an optimised equivalent aggregate radius for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Strain-dependent hydraulic conductivities are uniquely defined by an environmental factor, representing applied normal and shear strains, combined with intrinsic material parameters representing mass and component deformation moduli, initial conductivities, and mass structure. The components representing mass moduli and structure are defined in terms of RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock. These two empirical parameters determine the hydraulic response of a fractured medium to the induced-deformations The constitutive relations are verified against available published data and applied to study one-dimensional, strain-dependent fluid flow. Analytical results indicate that both normal and shear strains exert a significant influence on the processes of fluid flow and that the magnitude of this influence is regulated by the values of RQD and RMR.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time.
Resumo:
For a parameter lambda > 0, we study a type of vortex equations, which generalize the well-known Hermitian-Einstein equation, for a connection A and a section phi of a holomorphic vector bundle E over a Kahler manifold X. We establish a global existence of smooth solutions to heat flow for a self-dual Yang-Mills-Higgs field on E. Assuming the lambda -stability of (E, phi), we prove the existence of the Hermitian Yang-Mills-Higgs metric on the holomorphic bundle E by studying the limiting behaviour of the gauge flow.
Resumo:
Centrifuge experiments modeling single-phase flow in prototype porous media typically use the same porous medium and permeant. Then, well-known scaling laws are used to transfer the results to the prototype. More general scaling laws that relax these restrictions are presented. For permeants that are immiscible with an accompanying gas phase, model-prototype (i.e., centrifuge model experiment-target system) scaling is demonstrated. Scaling is shown to be feasible for Miller-similar (or geometrically similar) media. Scalings are presented for a more, general class, Lisle-similar media, based on the equivalence mapping of Richards' equation onto itself. Whereas model-prototype scaling of Miller-similar media can be realized easily for arbitrary boundary conditions, Lisle-similarity in a finite length medium generally, but not always, involves a mapping to a moving boundary problem. An exception occurs for redistribution in Lisle-similar porous media, which is shown to map to spatially fixed boundary conditions. Complete model-prototype scalings for this example are derived.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
Surge flow phenomena. e.g.. as a consequence of a dam failure or a flash flood, represent free boundary problems. ne extending computational domain together with the discontinuities involved renders their numerical solution a cumbersome procedure. This contribution proposes an analytical solution to the problem, It is based on the slightly modified zero-inertia (ZI) differential equations for nonprismatic channels and uses exclusively physical parameters. Employing the concept of a momentum-representative cross section of the moving water body together with a specific relationship for describing the cross sectional geometry leads, after considerable mathematical calculus. to the analytical solution. The hydrodynamic analytical model is free of numerical troubles, easy to run, computationally efficient. and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model compares very favorably with a full hydrodynamic numerical model in respect to published results of surge flow simulations in different types of prismatic channels. In order to extend these considerations to natural rivers, the accuracy of the analytical model in describing an irregular cross section is investigated and tested successfully. A sensitivity and error analysis reveals the important impact of the hydraulic radius on the velocity of the surge, and this underlines the importance of an adequate description of the topography, The new approach is finally applied to simulate a surge propagating down the irregularly shaped Isar Valley in the Bavarian Alps after a hypothetical dam failure. The straightforward and fully stable computation of the flood hydrograph along the Isar Valley clearly reflects the impact of the strongly varying topographic characteristics on the How phenomenon. Apart from treating surge flow phenomena as a whole, the analytical solution also offers a rigorous alternative to both (a) the approximate Whitham solution, for generating initial values, and (b) the rough volume balance techniques used to model the wave tip in numerical surge flow computations.
Resumo:
In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.
Resumo:
We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 mum ceramic membrane successfully recovered the granulocyte macrophagecolony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by infermenter Benzonase(R) digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and re-suspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations. (C) 2004 Wiley Periodicals Inc.
Resumo:
This paper presents field measurements and numerical simulations of groundwater dynamics in the intertidal zone of a sandy meso-tidal beach. The study, focusing on vertical hydraulic gradients and pore water salinities, reveals that tides and waves provide important forcing mechanisms for flow and salt transport in the nearshore aquifer. Such forcing, interacting with the beach morphology, enhances the exchange between the aquifer and ocean. The spatial and temporal variations of vertical hydraulic gradients demonstrate the complexity and dynamic nature of the processes and the extent of mixing between fresh groundwater and seawater in a subterranean estuary''. These results provide evidence of a potentially important reaction zone in the nearshore aquifer driven by oceanic oscillations. Land-derived contaminants may undergo important biogeochemical transformations in this zone prior to discharge.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.