974 resultados para in-vitro fertilization, ovulation induction, self-reporting
Resumo:
Titanocene compounds are a novel series of agents that exhibit cytotoxic effects in a variety of human cancer cells in vitro and in vivo. In this study, the antiproliferative activity of two titanocenes (Titanocenes X and Y) was evaluated in human epidermoid cancer cells in vitro. Titanocenes X and Y induce apoptotic cell death in epidermoid cancer cells, with IC50 values that are comparable to cisplatin. Characterisation of the cell death pathway induced by titanocene compounds in A431 cells revealed that apoptosis is preceded by cell cycle arrest and the inhibition of cell proliferation. The induction of apoptosis is dependent on the activation of caspase-3 and -7 but not caspase-8. Furthermore, the antitumour activity of Titanocene Y was tested in an A431 xenograft model of epidermoid cancer. Results indicate that Titanocene Y significantly reduced the growth of A431 xenografts with an antitumour effect similar to cisplatin. These results suggest that titanocenes represent a novel series of promising antitumour agents.
Resumo:
Commensal bacteria, including some species of lactobacilli commonly present in human breast milk, appear to colonize the neonatal gut and contribute to protection against infant infections, suggesting that lactobacilli could potentially modulate immunity. In this study, we evaluated the potential of two Lactobacillus strains isolated from human milk to modulate the activation and cytokine profile of peripheral blood mononuclear cell (PBMC) subsets in vitro. Moreover, these effects were compared to the same probiotic species of non-milk origin. Lactobacillus salivarius CECT5713 and Lactobacillus fermentum CECT5716 at 105, 106 and 107 bacteria/mL were co-cultured with PBMC (106/mL) from 8 healthy donors for 24 h. Activation status (CD69 and CD25 expressions) of natural killer (NK) cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) and CD4+ T cells was determined by flow cytometry. Regulatory T cells (Treg) were also quantified by intracellular Foxp3 evaluation. Regarding innate immunity, NK cells were activated by addition of both Lactobacillus strains, and in particular, the CD8+ NK subset was preferentially induced to highly express CD69 (90%, p<0.05). With respect to acquired immunity, approximately 9% of CD8+ T cells became activated after co-cultivation with L. fermentum or L salivarius. Although CD4+ T cells demonstrated a weaker response, there was a preferential activation of Treg cells (CD4+CD25+Foxp3+) after exposure to both milk probiotic bacteria (p<0.05). Both strains significantly induced the production of a number of cytokines and chemokines, including TNFα, IL-1β, IL-8, MIP-1α, MIP-1β, and GM-CSF, but some strain-specific effects were apparent. This work demonstrates that L salivarius CECT5713 and L. fermentum CECT5716 enhanced both natural and acquired immune responses, as evidenced by the activation of NK and T cell subsets and the expansion of Treg cells, as well as the induction of a broad array of cytokines.
Resumo:
Dormancy is a mechanism that regulates the timing of sprouting (germination) of affected plant parts as well as ensures that the food quality of edible parts is maintained in storage until the following growing season. In yam, however, little is known about the control of tuber initiation or tuber dormancy. The objective of this study was to determine the effects of selected plant growth regulators (PGRs) on tuber initiation and dormancy, using an in vitro system. In two replicated experiments, 2-chloroethylphosphonic acid (ethephon, an ethylene source), abscisic acid (ABA) and gibberellin (GA3) – and their inhibitors silver nitrate, fluridone and 2-chloroethyl-trimethylammonium chloride, respectively – were added at two concentrations to the culture medium prior to explant culture. Dates of micro-tuber initiation and sprouting (end of dormancy) and tuber number were recorded. In the control (no PGR) in Experiment 1, micro-tubers were initiated at the base of the stem after 176 days and sprouted 235 days later, that is 411 days after culturing. Most PGR treatments had only small effects (±30 days) on the duration of dormancy and the time of micro-tuber initiation. However, in GA3 micro-tuber initiation occurred after 76 days, about 100 days earlier than in the control, whereas fluridone affected the position of micro-tubers and duration of dormancy. With fluridone treatments, tubers were found at the base of the stem (normal position) and on lower and upper nodes. Lower node tubers sprouted within 225 days of culturing compared with about 420 days after culturing at other nodal positions and in other PGR treatments. These data suggest an important role for ABA and gibberellic acid in yam micro-tuber initiation and the induction of dormancy.
Resumo:
Incubation with 5-n-alkylresorcinols (chain lengths C15:0, C17:0, C19:0, C21:0, and C23:0) increased the self-protection capacity of HT29 human colon cancer cells against DNA damage induced by hydrogen peroxide and genotoxic fecal water samples using comet assay (single-cell gel electrophoresis assay). The alkylresorcinols did not exert potent antioxidant activity in the FRAP (ferric reduction ability of plasma) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assays. However they were able to significantly inhibit copper-mediated oxidation of human LDL (low-density lipoprotein) in vitro, and pentadecylresorcinol at 25 micromol/L increased lag time by 65 min. The results show that alkylresorcinols have antigenotoxic and antioxidant activity under in vitro conditions.
Resumo:
Vegetable consumption is associated with a reduced risk of colorectal cancer, which is the second most common cancer after lung/breast cancer within Europe. Some putative protective phytochemicals are found in higher amounts in young sprouts than in mature plants. The effect of an extract of mixed cruciferous and legume sprouts on DNA damage induced by H(2)O(2) was measured in HT29 cells using single cell microgelelectrophoresis (comet). Significant antigenotoxic effect (P < or = 0.05) was observed when HT29 cells were pre-incubated with the extract (100 and 200 microL/mL) for 24 hours and then challenged with H(2)O(2). A parallel design intervention study was carried out on 10 male and 10 female healthy adult volunteers (mean age = 25.5 years) fed 113 g of cruciferous and legume sprouts daily for 14 days. The effect of the supplementation was measured on a range of parameters, including DNA damage in lymphocytes (comet), the activity of various detoxifying enzymes (glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), antioxidant status using the ferric reducing ability of plasma assay, plasma antioxidants (uric acid, ascorbic acid, and alpha-tocopherol), blood lipids, plasma levels of lutein, and lycopene. A significant antigenotoxic effect against H(2)O(2)-induced DNA damage was shown in peripheral blood lymphocytes of volunteers who consumed the supplemented diet when compared with the control diet (P = 0.04). No significant induction of detoxifying enzymes was observed during the study, neither were plasma antioxidant levels or activity altered. The results support the theory that consumption of cruciferous vegetables is linked to a reduced risk of cancer via decreased damage to DNA.
Resumo:
The approach of reaggregation involves the regeneration and self-renewal of histotypical 3D spheres from isolated tissue kept in suspension culture. Reaggregated spheres can be used as tumour, genetic, biohybrid and neurosphere models. In addition the functional superiority of 3D aggregates over conventional 2D cultures developed the use of neurospheres for brain engineering of CNS diseases. Thus 3D aggregate cultures created enormous interest in mechanisms that regulate the formation of multicellular aggregates in vitro. Here we analyzed mechanisms guiding the development of 3D neurosphere cultures. Adult neural stem cells can be cultured as self-adherent clusters, called neurospheres. Neurospheres are characterised as heterogeneous clusters containing unequal stem cell sub-types. Tumour necrosis factor-alpha (TNF-alpha is one of the crucial inflammatory cytokines with multiple actions on several cell types. TNF-alpha strongly activates the canonical Nuclear Factor Kappa-B (NF- kappaB) pathway. In order to investigate further functions of TNF in neural stem cells (NSCs) we tested the hypothesis that TNF is able to modulate the motility and/or migratory behaviour of SVZ derived adult neural stem cells. We observed a significantly faster sphere formation in TNF treated cultures than in untreated controls. The very fast aggregation of isolated NSCs (<2h) is a commonly observed phenomenon, though the mechanisms of 3D neurosphere formation remain largely unclear. Here we demonstrate for the first time, increased aggregation and enhanced motility of isolated NSCs in response to the TNF-stimulus. Moreover, this phenomenon is largely dependent on activated transcription factor NF-kappaB. Both, the pharmacological blockade of NF-kappaB pathway by pyrrolidine dithiocarbamate (PDTC) or Bay11-7082 and genetic blockade by expression of a transdominant-negative super-repressor IkappaB-AA1 led to decreased aggregation.
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect skin and soft tissue in dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. Trichostatin A (TSA), an antifungal antibiotic, has shown inhibitory effects on the proliferation and induction of apoptosis in various types of cancer cells. In order to evaluate the potential of trichostatin A as a therapeutic drug, cells of grade 3 MCT were cultured and treated with concentrations of 1 nM to 400 nM of TSA. MTT assay and trypan blue exclusion assays were performed to estimate cell growth and cell viability, and cell cycle analysis was evaluated. TSA treatment showed a reduction in numbers of viable cells and an increase of cell death by apoptosis. The cell cycle analysis showed an increase of hypodiploid cells and a reduction of G0/G1 and G2/M -phases. According to these results, trichostatin A may be an interesting potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
Oocyte developmental competence depends on maternal stores that support development throughout a transcriptionally silent period during early embryogenesis. Previous attempts to investigate transcripts associated with oocyte competence have relied on prospective models, which are mostly based on morphological. criteria. Using a retrospective model, we quantitatively compared mRNA among oocytes with different embryo development competence. A cytoplasm biopsy was removed from in vitro matured oocytes to perform comparative analysis of amounts of global polyadenylated (polyA) mRNA and housekeeping gene transcripts. After parthenogenetic activation of biopsied oocytes, presumptive zygotes were cultured individually in vitro and oocytes were classified according to embryo development: (i) blocked before the 8-cell stage; (ii) blocked between the 8-cell and morulae stages; or (iii) developed to the blastocyst stage. Sham-manipulated controls confirmed that biopsies did not alter development outcome. Total polyA mRNA amounts correlate with oocyte diameter but not with the ability to develop to the 8-cell and blastocyst stages. The last was also confirmed by relative quantification of GAPDH, H2A and Hprt1 transcripts. In conclusion, we describe a novel retrospective model to identify putative markers of development competence in single oocytes and demonstrate that global mRNA amounts at the metaphase II stage do not correlate with embryo development in vitro.
Resumo:
Objectives: Asynchrony between nuclear and cytoplasmic maturation, and possibly damage to the oocyte meiotic spindle, limits the application of in vitro maturation (IVM) in assisted reproduction. Several studies have suggested that Prematuration with meiosis blockers may improve oocyte quality after IVM, favoring early embryogenesis. Thus, we investigated the effect of Prematuration with the nuclear maturation inhibitor butyrolactone I (BLI) on the meiotic spindle and chromosomal configuration of bovine oocytes. Study design: Immature oocytes obtained from cows slaughtered in a slaughterhouse (n = 840) were divided into the following groups: (1) control (n = 325), submitted only to IVM in TCM199 for 24 h; (2) BLI 18 h (n = 208) submitted to meiotic blockage with 100 mu M BLI for 24 h (Prematuration) and then induction of IVM in TCM199 for 18 h; and (3) BLI 24 h (n = 307), pre-matured with 100 mu m BLI for 24 h followed by 24 h of IVM in TCM199. The oocytes were then fixed, stained by immunofluorescence for morphological visualization of both microtubules and chromatin, and evaluated. Results: Meiotic arrest occurred in 90.2% of the oocytes cultured with BLI. Maturation rates were similar for all groups (80.3%, 73.6% and 82.7% for the control, BLI 18 h and BLI 24 h groups, respectively). We observed 81.3% normal oocytes in metaphase II in the control group, and 80.0% and 81.2% in the BLI 18 h and BLI 24 h groups, respectively. The incidence of meiotic anomalies did not differ between groups (18.7%, 20.0% and 18.8% for the control, BLI 18 h and BLI 24 h, respectively). Conclusion: Prematuration with butyrolactone I reversibly arrests meiosis without damaging the meiotic spindle or the chromosome distribution of bovine oocytes after in vitro maturation. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the metabolism of odontoblast-like MDPC-23 cells subjected to direct LLL irradiation. The cells were seeded (20,000 cells/well) in 24-well plates and incubated for 24 hours at 37 degrees C. After this period, the culture medium (DMEM) was replaced by fresh DMEM supplemented with 2 or 5% (stress induction by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to laser doses of 2, 4, 10, 15 and 25 J/cm(2) from a near infrared InGaAsP diode laser prototype (LASERTable; 780 +/- 3 nm, 40 mW). One control group (sham irradiation) was established for each experimental condition (laser dose x FBS supplementation). Three and 72 hours after the last irradiation, cells were analyzed with respect to metabolism, morphology, total protein expression and alkaline phosphatase (ALP) activity. Higher metabolism and total protein expression were observed 72 hours after the last irradiation at the doses of 15 and 25 J/cm(2) (Mann-Whitney; p<0.05). Higher ALP activity was obtained with 5% FBS when the cells were irradiated with doses of 2 and 10 J/cm(2). For the dose of 25 J/cm(2), the highest ALP activity was observed with 10% FBS. It was concluded that the LLLT parameters used in this study stimulated the metabolic activity of the MDPC-23 cells, especially at the doses of 15 and 25 J/cm(2).
Resumo:
In vitro morphogenesis and cell suspension culture establishment in Piper solmsianum C. DC. (Piperaceae)). Piper solmsianum is a shrub from Southeast Brazil in which many biologically active compounds were identified. The aim of this work was to establish a cell suspension culture system for this species. With this in mind, petiole and leaf explants obtained from in vitro plantlets were cultured in the presence of different plant growth regulator combinations (IAA, NAA, 2,4-D and BA). Root and indirect shoot adventitious formation, detected by histological analysis, was observed. Besides the different combinations of plant growth regulators, light regime and the supplement of activated charcoal (1.5 mg.l(-1)) were tested for callus induction and growth. Cultures maintained in light, on a 0.2 mg.l(-1) 2,4-D and 2 mg.l(-1) BA supplemented medium, and in the absence of activated charcoal, showed the highest calli fresh matter increment. From a callus culture, cell suspension cultures were established and their growth and metabolite accumulation studied. The achieved results may be useful for further characterization of the activated secondary metabolites pathways in in vitro systems of P. solmsianum.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A pesquisa foi instalada no Setor de Forragicultura da FCAV/UNESP-Jaboticabal, objetivando avaliar a composição química e a digestibilidade in vitro da matéria orgânica (DIVMO) do híbrido de Sorgo-sudão cv. AG 2501C, no outono e inverno. O manejo da pastagem foi conduzido simulando o sistema de lotação intermitente. O experimento foi desenvolvido de março a setembro de 2002. A forrageira foi submetida a nove tratamentos: três níveis de nitrogênio (100, 200 e 300 kg de N/ha) e três níveis de potássio (0, 80 e 160 kg de K2O/ha), em delineamento experimental em blocos casualizados e parcelas subdivididas. A adubação nitrogenada e potássica não foram significativas para a DIVMO. O nitrogênio influenciou a proteína bruta (PB) com valores de 15,1; 16,4 e 15,7 %, a fibra em detergente neutro (FDN) com valores de 65,3; 65,8 e 64,5% e fibra em detergente ácido (FDA) com 35,5; 37,8 e 39,6% para 100; 200 e 300 kg N/ha. O potássio aumentou significativamente a lignina das plantas. O melhor nível obtido foi 100 kg/ha de nitrogênio, sem potássio.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)