956 resultados para immobilized and dissolving


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb) or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg) and corn spurry (Spergula arvensis L.). The control treatment consisted of resident vegetation (fallow in the winter season). In the summer, a mixture of pearl millet (Pennisetum americanum L.) with sunnhemp (Crotalaria juncea L.) or with soybean (Glycine max L.) was sown in all plots. Soil cores (0-10 cm) and root samples were collected in six growing seasons (winter and summer of each year). Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil β-glucosidase participates in the final step of cellulose biodegradation. It is significant in the soil C cycle and is used as an indicator of the biological fertility of soil. However, the response of its kinetic parameters to environmental temperature and moisture regimes is not well understood. This study tested the β-glucosidase response in the main agricultural soils (black soil, albic soil, brown soil, and cinnamon soil) of Northeast China. Incubation tests were conducted to measure the kinetic parameters Km, Vmax or Vmax/Km of soil β-glucosidase at environmental temperatures of 10, 20 and 30 ºC and at 10, 20 and 30 % soil moisture content. The insensitive response of the kinetic parameters to temperature changes indicates that soil β-glucosidase was present primarily in immobilized form. The significant response of the kinetic parameters of soil β-glucosidase to soil moisture rather than to environmental temperatures suggests that the catalytic ability of soil β-glucosidase was sensitive to changing soil moisture regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thy-1, a cell adhesion molecule abundantly expressed in mammalian neurons, binds to a beta(3)-containing integrin on astrocytes and thereby stimulates the assembly of focal adhesions and stress fibers. Such events lead to morphological changes in astrocytes that resemble those occurring upon injury in the brain. Extracellular matrix proteins, typical integrin ligands, bind to integrins and promote receptor clustering as well as signal transduction events that involve small G proteins and cytoskeletal changes. Here we investigated the possibility that the cell surface protein Thy-1, when interacting with a beta(3)-containing integrin on astrocytes, could trigger signaling events similar to those generated by extracellular matrix proteins. DI-TNC(1) astrocytes were stimulated with Thy-1-Fc immobilized on beads, and increased RhoA activity was confirmed using an affinity precipitation assay. The effect of various inhibitors on the cellular response was also studied. The presence of Y-27632, an inhibitor of Rho kinase (p160ROCK), a key downstream effector of RhoA, significantly reduced focal adhesion and stress fiber formation induced by Thy-1. Similar effects were obtained when astrocytes were treated with C3 transferase, an inhibitor of RhoA. Alternatively, astrocytes were transfected with an expression vector encoding fusion proteins of enhanced green fluorescent protein with either the Rho-binding domain of Rhotekin, which blocks RhoA function, or the dominant-negative N19RhoA mutant. In both cases, Thy-1-induced focal adhesion formation was inhibited. Furthermore, we observed that RhoA activity after stimulation with soluble Thy-1-Fc molecule was augmented upon further cross-linking using protein A-Sepharose beads. The same was shown by cross-linking beta(3)-containing integrin with anti-beta(3) antibodies. Together, these results indicate that Thy-1-mediated astrocyte stimulation depended on beta(3) integrin clustering and the resulting increase in RhoA activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo. METHODS: We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals. RESULTS: In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining. CONCLUSIONS: These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer. ABBREVIATIONS: Armstrong 53b (Arm53b); baculovirus Autographa californica GP64 (GP64); charge-coupled device (CCD); dystroglycan (DG); feline immunodeficiency virus (FIV); glycoprotein precursor (GP-C); firefly luciferase (Luc); lymphocytic choriomeningitis virus (LCMV); nuclear targeted β-galactosidase (ntLacZ); optical density (OD); PBS/0.1% (w/v) Tween-20 (PBST); relative light units (RLU); Rous sarcoma virus (RSV); transducing units per milliliter (TU/ml); vesicular stomatitis virus (VSV-G); wheat germ agglutinin (WGA); 50% reduction in binding (C50).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to distinguish nestmates from foreign individuals is central to the functioning of insect societies. In ants, workers from multiple-queen colonies are often less aggressive than workers from single-queen ones. In line with this observation, it has been hypothesized that workers from multiple-queen colonies have less precise recognition abilities than workers from single-queen ones because their colonies contain genetically more diverse individuals, which results in a broader template of recognition cues. Here, we assessed the impact of social structure ( queen number) variation on nestmate recognition and aggression in a large population of the socially polymorphic ant Formica selysi. We staged unilateral aggression tests on the nest surface. Workers from single-and multiple-queen colonies had good nestmate recognition ability and did not differ significantly in their level of aggression towards foreign, immobilized workers ( cue-bearers). In particular, workers from multiple-queen colonies efficiently recognized non-nestmates despite the higher genetic diversity in their colony. Cue-bearers from single- and multiple-queen colonies elicited similar reactions. However, the level of aggression was higher between than within social forms, suggesting that workers detect a signal that is specific to the colony social structure. Finally, the level of aggression was not correlated with the genetic distance between colonies. Overall, we found no evidence for the hypothesis that the presence of multiple breeders in the same colony decreases recognition abilities and found no simple relationship between genetic diversity and aggression level. (c) 2007 The Association for the Study of Animal Behaviou

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. Results: To reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite (R) 545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI. 3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I. 3, requiring a refolding step, was poorly immobilized on all supports tested ( best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000. Conclusions: The suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent technology has provided us with new information about the internal structures and properties of biomolecules. This has lead to the design of applications based on underlying biological processes. Applications proposed for biomolecules are, for example, the future computers and different types of sensors. One potential biomolecule to be incorporated in the applications is bacteriorhodopsin. Bacteriorhodopsin is a light-sensitive biomolecule, which works in a similar way as the light sensitive cells of the human eye. Bacteriorhodopsin reacts to light by undergoing a complicated series of chemical and thermal transitions. During these transitions, a proton translocation occurs inside the molecule. It is possible to measure the photovoltage caused by the proton translocations when a vast number of molecules is immobilized in a thin film. Also the changes in the light absorption of the film can be measured. This work aimed to develop the electronics needed for the voltage measurements of the bacteriorhodopsin-based optoelectronic sensors. The development of the electronics aimed to get more accurate information about the structure and functionality of these sensors. The sensors used in this work contain a thick film of bacteriorhodopsin immobilized in polyvinylalcohol. This film is placed between two transparent electrodes. The result of this work is an instrumentation amplifier which can be placed in a small space very close to the sensor. By using this amplifier, the original photovoltage can be measured in more detail. The response measured using this amplifier revealed two different components, which could not be distinguished earlier. Another result of this work is the model for the photoelectric response in dry polymer films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of organo nanoclay 5-(4-dimethylamino-benzylidene) rhodanine-immobilized as a new, easily prepared, and stable solid sorbent for preconcentration trace amounts of Au(III) ions in aqueous solution is presented. The sorption of Au(III) ions was quantitative in the pH range of 2-4, and quantitative desorption occurred instantaneously with 10.0 mL of a mixture containing 0.5 mol L-1 Na2S2O3 and KSCN. Various parameters, such as the effect of pH, breakthrough volume, extraction time, and interference of a large number of anions and cations have been studied. The proposed method has been applied for determination of trace amount of gold in water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, the immobilization of some Schiff base-copper(II) complexes in smectite clays is described as a strategy for the heterogenization of homogeneous catalysts. The obtained materials were characterized by spectroscopic techniques, mostly UV/Vis, EPR, XANES and luminescence spectroscopy. SWy-2 and synthetic Laponite clays were used for the immobilization of two different complexes that have previously shown catalytic activity in the dismutation of superoxide radicals, and disproportionation of hydrogen peroxide. The obtained results indicated the occurrence of an intriguing intramolecular redox process involving copper and the imine ligand at the surface of the clays. These studies are supported by computational calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the environmental conditions for enzyme activity of catechol 1,2-dioxygenase (C1,2O) and catechol 2,3-dioxygenase (C2,3O) produced by Gordonia polyisoprenivorans in cell-free and immobilized extracts. The optimum conditions of pH, temperature, time course and effect of ions for enzyme activity were determined. Peak activity of C1,2O occurred at pH 8.0. The isolate exhibited the highest activity of C2,3O at pH 7.0 and 8.0 for the cell-free extract and immobilized extract, respectively. This isolate exhibited important characteristics such as broad range of pH, temperature and time course for enzyme activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB). The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complex cation, diNOsarcobalt(III), [Co(diNOsar)]3+, (diNOsar = 1,8-dinitro-3,6,10,13,16,19-hexaazabicyclo-[6.6.6]eicosane), was synthesized and immobilized in the cavities of a Y zeolite by the reaction of precursor species in the pores of the zeolite. The encapsulated material was compared to the compound diNOsarcobalt(III) chloride, [Co(diNOsar)]Cl3. Both diNOsarcobalt(III) chloride and the zeolite-encapsulated complex, [Co(diNOsar)]3+/zeolite, were obtained in high yield and characterized by ultraviolet-visible and infrared spectroscopy. X-ray diffraction demonstrated the incorporation of the complex cation into the pores of the zeolite. The catalytic production of hydrogen peroxide from oxygenated water confirmed the successful synthesis of the complex diNOsarcobalt(III) immobilized in the zeolite.