677 resultados para homoclinic bifurcation
Resumo:
The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic dislocation models for the hardening and DIF corresponding to the homogeneous dislocation configuration are extended to the case for the non-homogeneous one. In addition, using the result of dislocation patterning deduced from the non-linear dlislocation dynamics model for single slip, the correlation between the dislocation pattern and hardening as well as DIF is obtained. It is shown that in the case of the tension with a constant strain rate, the bifurcation point of dislocation patterning corresponds to the turning point in the stress versus strain and DIF versus strain curves. This result along with the critical characteristics of the macroscopic behavior near the bifurcation point is microscopically and macroscopically in agreement with the experimental findings on mono-crystalline pure aluminum at temperatures around 0.5T(m). The present study suggests that measuring the DIF would be a sensitive and useful mechanical means in order to study the critical phenomenon of materials during deformation.
Resumo:
A perturbation method is used to examine the linear instability of thermocapillary convection in a liquid bridge of floating half-zone filled with a small Prandtl number fluid. The influence of liquid bridge volume on critical Marangoni number and flow features is analyzed. The neutral modes show that the instability is mainly caused by the bulk flow that is driven by the nonuniform thermocapillary forces acting on the free surface. The hydrodynamic instability is dominant in the case of small Prandtl number fluid and the first instability mode is a stationary bifurcation. The azimuthal wave number for the most dangerous mode depends on the liquid bridge volume, and is not always two as in the case of a cylindrical liquid bridge with aspect ratio near 0.6. Its value may be equal to unity when the liquid bridge is relatively slender.
Resumo:
Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 +/- 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kn (i) < 0.02, but they scatter between 0.85 and 1.15 as Kn (i) > 0.02 with, to some extent, a very interesting bifurcation trend.
Resumo:
It is shown that in a Karman vortex street flow, particle size influences the dilute particle dispersion. Together with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit, as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a bifurcation phenomenon.
Resumo:
A criterion of spatial chaos occurring in lattice dynamical systems-heteroclinic cycle-is discussed. It is proved that if the system has asymptotically stable heteroclinic cycle, then it has asymptotically stable homoclinic point which implies spatial chaos.
Resumo:
Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Three types of streamline topology in a Karman vortex street flow are shown under the variation of spatial parameters. For the motion of dilute particles in the Karman vortex street flow, there exist a route of bifurcation to a chaotic orbit and more attractors in a bifurcation diagram for the proportion of particle density to fluid density. Along with the increase of spatial parameters in the flow field, the bifurcation process is suspended, as well as more and more attractors emerge. In the motion of dilute particles, a drag term and gravity term dominate and result in the bifurcation phenomenon.
Resumo:
In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.
Resumo:
Real-life structures often possess piecewise stiffness because of clearances or interference between subassemblies. Such an aspect can alter a system's fundamental free vibration response and leads to complex mode interaction. The free vibration behaviour of an L-shaped beam with a limit stop is analyzed by using the frequency response function and the incremental harmonic balance method. The presence of multiple internal resonances, which involve interactions among the first five modes and are extremely complex, have been discovered by including higher harmonics in the analysis. The results show that mode interaction may occur if the higher harmonics of a vibration mode are close to the natural frequency of a higher mode. The conditions for the existence of internal resonance are explored, and it is shown that a prerequisite is the presence of bifurcation points in the form of intersecting backbone curves. A method to compute such intersections by using only one harmonic in the free vibration solution is proposed. (C) 1996 Academic Press Limited
Resumo:
Unsteady and two-dimensional numerical simulation is applied to study the transition process from steady convection to turbulence via subharmonic bifurcation in thermocapillary convection of a liquid bridge in the half-floating zone. The results of numerical tests show clearly the fractal structure of period-doubling bifurcations, and frequency-locking at f/4, f/8, f/16 with basic frequency f is observed with increasing temperature difference. The Feigenbaum universal constant is given by the present paper as delta(4) = 4.853, which can be compared with the theoretical value 4.6642016.
Resumo:
The formation of shear bands in plane sheet is studied, both analytically and experimentally, to enhance the fundamental understanding of this phenomenon and to develop a capability for predicting material failure. The evolution of voids is measured and its interaction with the process of shear banding is examined. The evolving dilatancy in plasticity is shown to have a vital role in analysing the shear-band type of bifurcation, and tremendously reduces the theoretical value of critical stresses. The analyses, referring to both localized and diffuse modes of bifurcation, fairly explain the corresponding observations obtained through testing a dual-phase steer sheet and provide a justification of the constitutive model used.
Resumo:
A new technique, wavelet network, is introduced to predict chaotic time series. By using this technique, firstly, we make accurate short-term predictions of the time series from chaotic attractors. Secondly, we make accurate predictions of the values and bifurcation structures of the time series from dynamical systems whose parameter values are changing with time. Finally we predict chaotic attractors by making long-term predictions based on remarkably few data points, where the correlation dimensions of predicted attractors are calculated and are found to be almost identical to those of actual attractors.
Resumo:
The transition process from steady to turbulent convection via subharmonic bifurcation in thermocapillary convection of half floating zone was studied by numerical simulation and experimental test. Both approaches gave structure of period doubling bifurcations in the present paper, and the Feigenbaum universal law was checked for the system of thermocapillary convection.
Resumo:
The number, the angles of orientation and the stability in Rumyantsev Movchan's sense of oblique steady rotations of a symmetric heavy gyroscope with a cavity completely filled with a uniform viscous liquid, possessing a fixed point 0 on its symmetric axis. are given for various values of the parameters. By taking the square of the upright component of the angular momentum M2 as a control parameter, three types of bifurcation diagrams of the steady rotations, two types of jumps and two kinds of local catastrophes, one being the symmetric reduced cusp type and the other being of the symmetric reduced butterfly type, are obtained. By taking account of the M2-damping owing to the moment of unavoidable faint friction, two different modes for the gyroscope, initially in a stable quasi-steady upright rotation with a nutation angle theta(s) equal to zero, to topple over are found.