853 resultados para heterogeneous regressions algorithms
Resumo:
In this paper we investigate various algorithms for performing Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transformation (IFFT), and proper techniquesfor maximizing the FFT/IFFT execution speed, such as pipelining or parallel processing, and use of memory structures with pre-computed values (look up tables -LUT) or other dedicated hardware components (usually multipliers). Furthermore, we discuss the optimal hardware architectures that best apply to various FFT/IFFT algorithms, along with their abilities to exploit parallel processing with minimal data dependences of the FFT/IFFT calculations. An interesting approach that is also considered in this paper is the application of the integrated processing-in-memory Intelligent RAM (IRAM) chip to high speed FFT/IFFT computing. The results of the assessment study emphasize that the execution speed of the FFT/IFFT algorithms is tightly connected to the capabilities of the FFT/IFFT hardware to support the provided parallelism of the given algorithm. Therefore, we suggest that the basic Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) can also provide high performances, by utilizing a specialized FFT/IFFT hardware architecture that can exploit the provided parallelism of the DFT/IDF operations. The proposed improvements include simplified multiplications over symbols given in polar coordinate system, using sinе and cosine look up tables,and an approach for performing parallel addition of N input symbols.
Resumo:
Some practical aspects of Genetic algorithms’ implementation regarding to life cycle management of electrotechnical equipment are considered.
Resumo:
We analyze the incentives for cooperation of three players differing in their efficiency of effort in a contest game. We concentrate on the non-cooperative bargaining foundation of coalition formation, and therefore, we adopt a two-stage model. In the first stage, individuals form coalitions following a bargaining protocol similar to the one proposed by Gul (1989). Afterwards, coalitions play the contest game of Esteban and Ray (1999) within the resulting coalition structure of the first stage. We find that the grand coalition forms whenever the distribution of the bargaining power in the coalition formation game is equal to the distribution of the relative efficiency of effort. Finally, we use the case of equal bargaining power for all individuals to show that other types of coalition structures may be observed as well.
Resumo:
It is common to find in experimental data persistent oscillations in the aggregate outcomes and high levels of heterogeneity in individual behavior. Furthermore, it is not unusual to find significant deviations from aggregate Nash equilibrium predictions. In this paper, we employ an evolutionary model with boundedly rational agents to explain these findings. We use data from common property resource experiments (Casari and Plott, 2003). Instead of positing individual-specific utility functions, we model decision makers as selfish and identical. Agent interaction is simulated using an individual learning genetic algorithm, where agents have constraints in their working memory, a limited ability to maximize, and experiment with new strategies. We show that the model replicates most of the patterns that can be found in common property resource experiments.
Resumo:
We construct estimates of educational attainment for a sample of OECD countries using previously unexploited sources. We follow a heuristic approach to obtain plausible time profiles for attainment levels by removing sharp breaks in the data that seem to reflect changes in classification criteria. We then construct indicators of the information content of our series and a number of previously available data sets and examine their performance in several growth specifications. We find a clear positive correlation between data quality and the size and significance of human capital coefficients in growth regressions. Using an extension of the classical errors in variables model, we construct a set of meta-estimates of the coefficient of years of schooling in an aggregate Cobb-Douglas production function. Our results suggest that, after correcting for measurement error bias, the value of this parameter is well above 0.50.
Resumo:
"Vegeu el resum a l'inici del fitxer adjunt."
Resumo:
Estudio elaborado a partir de una estancia en el Karolinska University Hospital, Suecia, entre marzo y junio del 2006. En la radioterapia estereotáxica extracraneal (SBRT) de tumores de pulmón existen principalmente dos problemas en el cálculo de la dosis con los sistemas de planificación disponibles: la precisión limitada de los algoritmos de cálculo en presencia de tejidos con densidades muy diferentes y los movimientos debidos a la respiración del paciente durante el tratamiento. El objetivo de este trabajo ha sido llevar a cabo la simulación con el código Monte Carlo PENELOPE de la distribución de dosis en tumores de pulmón en casos representativos de tratamientos con SBRT teniendo en cuenta los movimientos respiratorios y su comparación con los resultados de varios planificadores. Se han estudiado casos representativos de tratamientos de SBRT en el Karolinska University Hospital. Los haces de radiación se han simulado mediante el código PENELOPE y se han usado para la obtención de los resultados MC de perfiles de dosis. Los resultados obtenidos para el caso estático (sin movimiento respiratorio ) ponen de manifiesto que, en comparación con la MC, la dosis (Gy/MU) calculada por los planificadores en el tumor tiene una precisión del 2-3%. En la zona de interfase entre tumor y tejido pulmonar los planificadores basados en el algoritmo PB sobrestiman la dosis en un 10%, mientras que el algoritmo CC la subestima en un 3-4%. Los resultados de la simulación mediante MC de los movimientos respiratorios indican que los resultados de los planificadores son suficientemente precisos en el tumor, aunque en la interfase hay una mayor subestimación de la dosis en comparación con el caso estático. Estos resultados son compatibles con la experiencia clínica adquirida durante 15 años en el Karolinska University Hospital. Los resultados se han publicado en la revista Acta Oncologica.
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the analytical model. Our main conclusion is that analytical and computational models are good complements for research in social sciences. Indeed, while on the one hand computational models are extremely useful to extend the scope of the analysis to complex scenar
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
This paper proposes a bootstrap artificial neural network based panel unit root test in a dynamic heterogeneous panel context. An application to a panel of bilateral real exchange rate series with the US Dollar from the 20 major OECD countries is provided to investigate the Purchase Power Parity (PPP). The combination of neural network and bootstrapping significantly changes the findings of the economic study in favour of PPP.
Resumo:
This paper studies the implications for monetary policy of heterogeneous expectations in a New Keynesian model. The assumption of rational expectations is replaced with parsimonious forecasting models where agents select between predictors that are underparameterized. In a Misspecification Equilibrium agents only select the best-performing statistical models. We demonstrate that, even when monetary policy rules satisfy the Taylor principle by adjusting nominal interest rates more than one for one with inflation, there may exist equilibria with Intrinsic Heterogeneity. Under certain conditions, there may exist multiple misspecification equilibria. We show that these findings have important implications for business cycle dynamics and for the design of monetary policy.