827 resultados para habitat generalist species
Resumo:
Aim: To quantify the consequences of major threats to biodiversity, such as climate and land-use change, it is important to use explicit measures of species persistence, such as extinction risk. The extinction risk of metapopulations can be approximated through simple models, providing a regional snapshot of the extinction probability of a species. We evaluated the extinction risk of three species under different climate change scenarios in three different regions of the Mexican cloud forest, a highly fragmented habitat that is particularly vulnerable to climate change. Location: Cloud forests in Mexico. Methods: Using Maxent, we estimated the potential distribution of cloud forest for three different time horizons (2030, 2050 and 2080) and their overlap with protected areas. Then, we calculated the extinction risk of three contrasting vertebrate species for two scenarios: (1) climate change only (all suitable areas of cloud forest through time) and (2) climate and land-use change (only suitable areas within a currently protected area), using an explicit patch-occupancy approximation model and calculating the joint probability of all populations becoming extinct when the number of remaining patches was less than five. Results: Our results show that the extent of environmentally suitable areas for cloud forest in Mexico will sharply decline in the next 70 years. We discovered that if all habitat outside protected areas is transformed, then only species with small area requirements are likely to persist. With habitat loss through climate change only, high dispersal rates are sufficient for persistence, but this requires protection of all remaining cloud forest areas. Main conclusions: Even if high dispersal rates mitigate the extinction risk of species due to climate change, the synergistic impacts of changing climate and land use further threaten the persistence of species with higher area requirements. Our approach for assessing the impacts of threats on biodiversity is particularly useful when there is little time or data for detailed population viability analyses. © 2013 John Wiley & Sons Ltd.
Resumo:
Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species. © 2010 by the Ecological Society of America.
Resumo:
Species distribution models (SDMs) are considered to exemplify Pattern rather than Process based models of a species' response to its environment. Hence when used to map species distribution, the purpose of SDMs can be viewed as interpolation, since species response is measured at a few sites in the study region, and the aim is to interpolate species response at intermediate sites. Increasingly, however, SDMs are also being used to also extrapolate species-environment relationships beyond the limits of the study region as represented by the training data. Regardless of whether SDMs are to be used for interpolation or extrapolation, the debate over how to implement SDMs focusses on evaluating the quality of the SDM, both ecologically and mathematically. This paper proposes a framework that includes useful tools previously employed to address uncertainty in habitat modelling. Together with existing frameworks for addressing uncertainty more generally when modelling, we then outline how these existing tools help inform development of a broader framework for addressing uncertainty, specifically when building habitat models. As discussed earlier we focus on extrapolation rather than interpolation, where the emphasis on predictive performance is diluted by the concerns for robustness and ecological relevance. We are cognisant of the dangers of excessively propagating uncertainty. Thus, although the framework provides a smorgasbord of approaches, it is intended that the exact menu selected for a particular application, is small in size and targets the most important sources of uncertainty. We conclude with some guidance on a strategic approach to identifying these important sources of uncertainty. Whilst various aspects of uncertainty in SDMs have previously been addressed, either as the main aim of a study or as a necessary element of constructing SDMs, this is the first paper to provide a more holistic view.
Resumo:
The East Indies triangle, bordered by the Phillipines, Malay Peninsula and New Guinea, has a high level of tropical marine species biodiversity. Pristipomoides multidens is a large, long-lived, fecund snapper species that is distributed throughout the East Indies and Indo-Pacific. Samples were analysed from central and eastern Indonesia and northern Australia to test for genetic discontinuities in population structure. Fish (n = 377) were collected from the Indonesian islands of Bali, Sumbawa, Flores, West Timor, Tanimbar and Tual along with 131 fish from two northern Australian locations (Arafura and Timor Seas) from a previous study. Genetic variation in the control region of the mitochondrial genome was assayed using restriction fragment length polymorphism and direct sequencing. Haplotype diversity was high (0.67-0.82), as was intraspecific sequence divergence (range 0-5.8%). FST between pairs of populations ranged from 0 to 0.2753. Genetic subdivision was apparent on a small spatial scale; FST was 0.16 over 191 km (Bali/Sumbawa) and 0.17 over 491 km (Bali/Flores). Constraints to dispersal that contribute to, and maintain, the observed degree of genetic subdivision are experienced presumably by all life history stages of this tropical marine finfish. The constraints may include (1) little or no movement of eggs or larvae, (2) little or no home range or migratory movement of adults and (3) loss of larval cohorts due to transport of larvae away from suitable habitat by prevailing currents
Resumo:
Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETRmax), photosynthetic efficiency (?), saturating irradiance (Ek) and effective quantum yield (?F/Fm?) were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETRmax and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETRmax, Ek and ?F/Fm? were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.
Resumo:
The reliability of ants as bioindicators of ecosystem condition is dependent on the consistency of their response to localised habitat characteristics, which may be modified by larger-scale effects of habitat fragmentation and loss. We assessed the relative contribution of habitat fragmentation, habitat loss and within-patch habitat characteristics in determining ant assemblages in semi-arid woodland in Queensland, Australia. Species and functional group abundance were recorded using pitfall traps across 20 woodland patches in landscapes that exhibited a range of fragmentation states. Of fragmentation measures, changes in patch area and patch edge contrast exerted the greatest influence on species assemblages, after accounting for differences in habitat loss. However, 35% of fragmentation effects on species were confounded by the effects of habitat characteristics and habitat loss. Within-patch habitat characteristics explained more than twice the amount of species variation attributable to fragmentation and four times the variation explained by habitat loss. The study indicates that within-patch habitat characteristics are the predominant drivers of ant composition. We suggest that caution should be exercised in interpreting the independent effects of habitat fragmentation and loss on ant assemblages without jointly considering localised habitat attributes and associated joint effects.
Resumo:
Involvement in scientifically structured habitat monitoring is a relatively new concept to the peoples of Torres Strait. The approach we used was to focus on awareness, and to build the capacity of groups to participate using Seagrass-Watch as the vehicle to provide education and training in monitoring marine ecosystems. The project successfully delivered quality scientifically rigorous baseline information on the seasonality of seagrasses in the Torres Strait-a first for this region. Eight seagrass species were identified across the monitoring sites. Seagrass cover varied within and between years. Preliminary evidence indicated that drivers for seagrass variability were climate related. Generally, seagrass abundance increased during the north-west monsoon (Kuki), possibly a consequence of elevated nutrients, lower tidal exposure times, less wind, and higher air temperatures. Low seagrass abundance coincided with the presence of greater winds and longer periods of exposure at low tides during the south-east trade wind season (Sager). No seasonal patterns were apparent when frequency of disturbance from high sedimentation and human impacts was high. Seagrass-Watch has been incorporated in to the Thursday Island High School's Marine Studies Unit ensuring continuity of monitoring. The students, teachers, and other interested individuals involved in Seagrass-Watch have mastered the necessary scientific procedures to monitor seagrass meadows, and developed skills in coordinating a monitoring program and skills in mentoring younger students. This has increased the participants' self-esteem and confidence, and given them an insight into how they may participate in the future management of their sea country.
Resumo:
We examine the microchemistry of otoliths of cohorts of a fished shed population of the large catadromous fish, barramundi Lates calcarifer from the estuary of a large tropical river. Barramundi from the estuary of the large, heavily regulated Fitzroy River, north eastern Australia were analysed by making transects of 87Sr/86Sr isotope and trace metal/Ca ratios from the core to the outer edge. Firstly, we examined the Sr/Ca, Ba/Ca, Mg/Ca and Mn/Ca and 87Sr/86Sr isotope ratios in otoliths of barramundi tagged in either freshwater or estuarine habitats that were caught by the commercial fishery in the estuary. We used 87Sr/86Sr isotope ratios to identify periods of freshwater residency and assess whether trace metal/Ca ratios varied between habitats. Only Sr/Ca consistently varied between known periods of estuarine or freshwater residency. The relationships between trace metal/Ca and river flow, salinity, temperature were examined in fish tagged and recaptured in the estuary. We found weak and inconsistent patterns in relationships between these variables in the majority of fish. These results suggest that both individual movement history within the estuary and the scale of environmental monitoring were reducing our ability to detect any patterns. Finally, we examined fish in the estuary from two dominant age cohorts (4 and 7 yr old) before and after a large flood in 2003 to ascertain if the flood had enabled fish from freshwater habitats to migrate to the estuary. There was no difference in the proportion of fish in the estuary that had accessed freshwater after the flood. Instead, we found that larger individuals with each age cohort were more likely to have spent a period in freshwater. This highlights the need to maintain freshwater flows in rivers. About half the fish examined had accessed freshwater habitats before capture. Of these, all had spent at least their first two months in marine salinity waters before entering freshwater and some did not enter freshwater until four years of age. This contrasts with the results of several previous studies in other parts of the range that found that access to freshwater swamps by larval barramundi was important for enhanced population productivity and recruitment.
Resumo:
The following aspects of Prosopis spp. are reviewed: name; taxonomy; hybrids; description; history in Australia; distribution; habitat; growth and development; reproduction; population dynamics; importance; costs in Australia; legislation; and weedmanagement.
Resumo:
Buffel grass [Pennisetum ciliare (L.) Link] has been widely introduced in the Australian rangelands as a consequence of its value for productive grazing, but tends to competitively establish in non-target areas such as remnant vegetation. In this study, we examined the influence landscape-scale and local-scale variables had upon the distribution of buffel grass in remnant poplar box (Eucalyptus populnea F. Muell.) dominant woodland fragments in the Brigalow Bioregion, Queensland. Buffel grass and variables thought to influence its distribution in the region were measured at 60 sites, which were selected based on the amount of native woodland retained in the landscape and patch size. An information-theoretic modelling approach and hierarchical partitioning revealed that the most influential variable was the percent of retained vegetation within a 1-km spatial extent. From this, we identified a critical threshold of similar to 30% retained vegetation in the landscape, above which the model predicted buffel grass was not likely to occur in a woodland fragment. Other explanatory variables in the model were site based, and included litter cover and long-term rainfall. Given the paucity of information on the effect of buffel grass upon biodiversity values, we undertook exploratory analyses to determine whether buffel grass cover influenced the distribution of grass, forb and reptile species. We detected some trends; hierarchical partitioning revealed that buffel grass cover was the most important explanatory variable describing habitat preferences of four reptile species. However, establishing causal links - particularly between native grass and forb species and buffel grass - was problematic owing to possible confounding with grazing pressure. We conclude with a set of management recommendations aimed at reducing the spread of buffel grass into remnant woodlands.
Resumo:
The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.
Resumo:
The reproductive biology of two invasive tilapia species, Oreochromis mossambicus and Tilapia mariae, resident in freshwater habitats in north-eastern Australia was investigated. Oreochromis mossambicus exhibited plasticity in some of its life-history characteristics that enhanced its ability to occupy a range of habitats. These included a shallow, weed-choked, freshwater coastal drain that was subject to temperature and dissolved oxygen extremes and water-level fluctuations to cooler, relatively high-altitude impoundments. Adaptations to harsher conditions included a decreased total length (LT) and age ( A) at 50% maturity (m50), short somatic growth intervals, early maturation and higher relative fecundities. Potential fecundity in both species was relatively low, but parental care ensured high survival rates of both eggs and larvae. No significant difference in the relative fecundity of T. mariae populations in a large impoundment and a coastal river was found, but there were significant differences in relative fecundities between several of the O. mossambicus populations sampled. Total length ( LT) and age at 50% maturity of O. mossambicus populations varied considerably depending on habitat. The LTm50 and Am50 values for male and female O. mossambicus in a large impoundment were considerably greater than for those resident in a small coastal drain. Monthly gonad developmental stages and gonado-somatic indices suggested that in coastal areas, spawning of O. mossambicus and T. mariae occurred throughout most of the year while in cooler, high-altitude impoundments, spawning peaked in the warmer, summer months. The contribution these reproductive characteristics make to the success of both species as colonizers is discussed in the context of future control and management options for tilapia incursions in Australia.
Resumo:
Knowledge of the habitat requirements of bat species is needed in decision making in land use planning. Bats' hibernation requirements were studied both in Estonia and in southern Finland. In both countries, the northern bat and the brown long-eared bat hibernated in colder and drier locations, whereas Daubenton's bat and Brandt's/whiskered bats hibernated in warmer and more humid locations. In Estonia, the pond bat hibernated in the warmest and most humid conditions, whereas Natterer's bat hibernated in the coldest and driest conditions. Hibernacula were at their coldest in mid-season and became warmer towards the end of the season. The results suggest that bats made an active choice of colder hibernation temperatures at the seasons end. They minimised the negative effects of hibernation early in the hibernation season by hibernating in warmer locations and energy expenditure late in the hibernation season by hibernating in colder locations. The use of foraging habitats was studied in northern and southern Finland. The northern bat used foraging sites opportunistically. Daubenton's bat foraged mainly in water habitats, whereas Brandt's/whiskered bats and the brown long-eared bat foraged mainly in forest habitats. In northern Finland, Daubenton's bats foraged almost exclusively on rivers and typically together with the northern bat. Daubenton's bats and Brandt's/whiskered bats were found only where there were lower ambient light levels. One of the most important things in the management of foraging areas for them is to keep them shady. Hibernacula in Finland typically housed few bats, suggesting that hibernation sites used by even a small number of bats are important. Bats typically used natural stone for hibernation suggesting that natural underground sites in rocks or cliffs or man-made underground sites built using natural stone are important for them. The results suggest that appropriate timing of surveys may vary according to the species and latitude.
Resumo:
Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.
Resumo:
Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.