913 resultados para grade and tonnage models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irrigation practices that are profligate in their use of water have come under closer scrutiny by water managers and the public. Trickle irrigation has the propensity to increase water use efficiency but only if the system is designed to meet the soil and plant conditions. Recently we have provided a software tool, WetUp (http://www.clw.csiro.au/products/wetup/), to calculate the wetting patterns from trickle irrigation emitters. WetUp uses an analytical solution to calculate the wetted perimeter for both buried and surface emitters. This analytical solution has a number of assumptions, two of which are that the wetting front is defined by water content at which the hydraulic conductivity (K) is I mm day(-1) and that the flow occurs from a point source. Here we compare the wetting patterns calculated with a 2-dimensional numerical model, HYDRUS2D, for solving the water flow into typical soils with the analytical solution. The results show that the wetting patterns are similar, except when the soil properties result in the assumption of a point source no longer being a good description of the flow regime. Difficulties were also experienced with getting stable solutions with HYDRUS2D for soils with low hydraulic conductivities. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jackson (2005) developed a hybrid model of personality and learning, known as the learning styles profiler (LSP) which was designed to span biological, socio-cognitive, and experiential research foci of personality and learning research. The hybrid model argues that functional and dysfunctional learning outcomes can be best understood in terms of how cognitions and experiences control, discipline, and re-express the biologically based scale of sensation-seeking. In two studies with part-time workers undertaking tertiary education (N=137 and 58), established models of approach and avoidance from each of the three different research foci were compared with Jackson's hybrid model in their predictiveness of leadership, work, and university outcomes using self-report and supervisor ratings. Results showed that the hybrid model was generally optimal and, as hypothesized, that goal orientation was a mediator of sensation-seeking on outcomes (work performance, university performance, leader behaviours, and counterproductive work behaviour). Our studies suggest that the hybrid model has considerable promise as a predictor of work and educational outcomes as well as dysfunctional outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter. We propose a simple method for including noise within a scalar model which will allow both the noise-noise dominated limit and the signal-noise dominated limit to be treated consistently. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the exchange rate forecasting performance of neural network models are evaluated against random walk and a range of time series models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore the parameters are chosen according to what the researcher considers to be the best. Such an approach, however, implies that the risk of making bad decisions is extremely high which could explain why in many studies neural network models do not consistently perform better than their time series counterparts. In this paper through extensive experimentation the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of performing well. Our results show that in general neural network models perform better than traditionally used time series models in forecasting exchange rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.