889 resultados para glutathione reductase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first examples of stable spirodiazaselenurane and spirodiazatellurane were synthesized by oxidative spirocyclization of the corresponding diaryl selenide and telluride and were structurally characterized. X-ray crystal structures of the spirodiazaselenurane and spirodiazatellurane suggest that the structures are distorted trigonal bipyramidal (TBP) with the electronegative nitrogen atoms occupying the apical positions and two carbon atoms and the lone pair of Se/Te occupying the equatorial positions. Interestingly, the spirodiazatellurane underwent spontaneous chiral resolution during crystallization, and the absolute configurations of its enantiomers were confirmed by single-crystal X-ray analyses. A detailed mechanistic study indicates that the cyclization to spirodiazaselenurane and spirodiazatellurane occurs via selenoxide and telluroxide intermediates. The chalcogenoxides cyclize to the corresponding spiro compounds in a stepwise manner via the involvement of hydroxyl chalcogenurane intermediates, and the activation energy for them spirocyclization reaction decreases in the order S > Se > Te. In addition to the synthesis, characterization, and mechanism of cyclization, the glutathione peroxidase (GPx) mimetic activity of the newly synthesized compounds was evaluated. These studies suggest that the tellurium compounds are more effective as GPx mimics than their selenium counterparts due to the fast oxidation of the tellurium center in the presence of peroxide and the involvement of an efficient redox cycle between the telluride and telluroxide intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron deficiency has been found to occur in Neurospora crassa grown in sole nitrate medium, even when levels of iron, normal with respect to the usual ammonium nitrate medium, were provided. Under this condition, mycelial nitrate reductase and catalase levels were high, there was inhibition of growth, and there was accumulation of an iron-binding compound and nitrite in the culture filtrate. These were counteracted by increasing the iron level of the sole nitrate medium, except that the catalase level increased still further. Evidence is presented for the control of nitrate reductase by iron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymes involved in the biosynthesis of isoleucine and valine have been shown to be present in cell-free extracts of Mycobacterium tuberculosis H37Rv. In addition to the known enzymes of the pathway, cell-free extracts of this organism contain a new enzyme. When cell-free extracts were incubated with acetolactate and Image -ascorbic acid, without reduced nicotinamide adenine dinucleotide phosphate, the isomer of acetolactate, viz., α-keto-β-hydroxyisovalerate, was found to accumulate and was identified by different methods. The reaction is enzymic, and Image -ascorbic acid cannot be replaced by other reducing agents such as hydroquinone, 2,6-dichlorophenol indophenol, or glutathione; by derivatives of Image -ascorbic acid such as dehydroascorbic acid or dimethyl ascorbic acid; or by cobamide coenzyme. Since the extracts also isomerize α-acetohydroxybutyrate to α-keto-β-hydroxy-β-methylvalerate, the enzyme catalyzing the reaction has been termed “acetohydroxy acid isomerase.” This is the first time that the presence of acetohydroxy acid isomerase has been reported in any biological system and that a specific metabolic role has been assigned for Image -ascorbic acid. The extract also possesses reductase activity to convert α-keto-β-hydroxyisovalerate to α,β-dihydroxyisovalerate in the presence of reduced nicotinamide adenine dinucleotide phosphate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. (C) 2010 IUBMB IUBMB Life, 62(6): 467-476.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & objectives: Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and involved in DNA synthesis, DNA repair and DNA methylation. The two common functional polymorphisms of MTHFR, 677C -> T and 1298 A -> C have shown to impact several diseases including cancer. This case-control study was undertaken to analyse the association of the MTHFR gene polymorphisms 677 C -> T and 1298 A -> C and risk of colorectal cancer (CRC).Methods: One hundred patients with a confirmed histopathologic diagnosis of CRC and 86 age and gender matched controls with no history of cancer were taken for this study. DNA was isolated from peripheral blood samples and the genotypes were determined by PCR-RFLP. The risk association was estimated by compounding odds ratio (OR) with 95 per cent confidence interval (CI). Results: Genotype frequency of MTHFR 677 CC, CT and TT were 76.7, 22.1 and 1.16 per cent in controls, and 74,25 and 1.0 per cent among patients. The 'T' allele frequency was 12.21 and 13.5 per cent in controls and patients respectively. The genotype frequency of MTHFR 1298 AA, AC, and CC were 25.6, 58.1 and 16.3 per cent for controls and 22, 70 and 8 per cent for patents respectively. The 'C' allele frequency for 1298 A -> C was 43.0 and 45.3 per cent respectively for controls and patients. The OR for 677 CT was 1.18 (95% CI 0.59-2.32, P = 0.642), OR for 1298 AC was 1.68 (95% CI 0.92-3.08, P = 0.092) and OR for 1298 CC was 0.45(95% CI 0.18-1.12, P = 0.081). The OR for the combined heterozygous state (677 CT and 1298 AC) was 1.18(95% CI 0.52-2.64, P =0.697).Interpretation & conclusion: The frequency of the MTHFR 677 TT genotype is rare as compared to 1298 CC genotype in the population studied. There was no association between 677 C -> T and 1298 A -> C polymorphisms and risk of CRC either individually or in combination. The homozygous state for 1298 A -> C polymorphism appears to slightly lower risk of CRC. This needs to be confirmed with a larger sample size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. Genetic polymorphisms of this enzyme have been shown to impact several diseases, including cancer. Leukemias are malignancies arising from rapidly proliferating hematopoietic cells having great requirement of DNA synthesis. This case-control study was undertaken to analyze the association of the MTHFR gene polymorphisms 677 C"T and 1298 A"C and the risk of acute lymphoblastic leukemia in children. Materials and Methods: Eighty-six patients aged below 15 years with a confirmed diagnosis of acute lymphoblastic leukemia (ALL) and 99 matched controls were taken for this study. Analysis of the polymorphisms was done using the polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP) method. Results: Frequency of MTHFR 677 CC and CT were 85.9% and 14.1% in the controls, and 84.9% and 15.1% in the cases. The 'T' allele frequency was 7% and 7.5% in cases and controls respectively. The frequency of MTHFR 1298 AA, AC, and CC were 28.3%, 55.6% and 16.1% for controls and 23.3%, 59.3% and 17.4% for cases respectively. The 'C' allele frequency for 1298 A→C was 43.9% and 47% respectively for controls and cases. The odds ratio (OR) for C677T was 1.08 (95% CI 0.48- 2.45, p = 0.851) and OR for A1298C was 1.29(95% CI 0.65-2.29, p = 0.46) and OR for 1298 CC was 1.31 (95% CI 0.53-3.26, p =0.56). The OR for the combined heterozygous status (677 CT and 1298 AC) was 1.94 (95% CI 0.58 -6.52, p = 0.286). Conclusion: The prevalence of 'T' allele for 677 MTHFR polymorphism was low in the population studied. There was no association between MTHFR 677 C→T and 1298 A→C gene polymorphisms and risk of ALL, which may be due to the small sample size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HMGCoA reductase is found to be inhibited by palmitylCoA and free CoA. The inhibition of this enzyme by ATP-Mg, but not by palmityl CoA, is lost on preincubation of microsomes at 50°C for 15 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes has been studied as a function of development in rat liver. The levels of cytochrome P-450 (b+e) mRNAs and their transcription rates are too low for detection in the 19-day old fetal liver before or after phenobarbitone treatment. However, glutathione transferase (Ya+Yc) mRNAs can be detected in the fetal liver as well as their induction after phenobarbitone treatment can be demonstrated. These mRNAs contents as well as their inducibility with phenobarbitone are lower in maternal liver than that of adult nonpregnant female rat liver. Steroid hormone administration to immature rats blocks substantially the phenobarbitone mediated induction of the two mRNA families as well as their transcription. It is suggested that steroid hormones constitute one of the factors responsible for the repression of the cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes in fetal liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concentration-dependent inactivation of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase was found on reincubation of rat liver microsomal preparations with H2O2 and at lower concentrations in the presence of KCN which inhibited the contaminating catalase. The inactivation was not affected in the presence quenchers of hydroxyl radicals and singlet oxygen and was also obtained when H2O2 was added during the reaction. HMG-CoA, but not NADPH, partially protected the enzyme from H2O2-inactivation. Even at high concentration DTT was unable to reverse this inactivation. The soluble 50 kDa-enzyme was similarly inactivated by H2O2, and the tryptic-digest of the inactivated protein indicated the presence of a disulfide-containing peptide. The results support the view that H2O2 by directly acting on the catalytic domain possibly converts an active thiol group to an inaccessible disulfide and irreversibly HMG-CoA reductase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment with diallyl disulfide, a constituent of garlic oil, irreversibly inactivated microsomal and a soluble 50 kDa form of HMG-CoA reductase. No radioactivity was found to be protein-bound on treating the soluble enzyme with [35S]diallyl disulfide, indicating the absence of the mixed disulfide of the type allyl-S-S-protein. SDS-PAGE and Western blot analyses of the diallyl-disulfide-treated protein showed no traces of the dimer of the type protein-S-S-protein, but clearly indicated BME-reversible increased mobility, as expected of an intramolecular protein disulfide. The sulfhydryl groups, as measured by alkylation with iodo[2-14C]acetic acid, were found to decrease in the diallyl-disulfide-treated enzyme protein. Tryptic peptide analysis also gave support for the possible presence of disulfide-containing peptides in such a protein. It appears that diallyl disulfide inactivated HMG-CoA reductase by forming an internal protein disulfide that became inaccessible for reduction by DTT, and thereby retaining the inactive state of the enzyme.