948 resultados para geniculate coralline algae
Resumo:
Abundance of picophytoplankton in the Subantarctic and subtropical frontal zones was found to be 10**6-10**7 cells/l. Biomass of eucaryotes and procaryotes reached 2 g/m**2 and accounted for 1-15% of total phytoplankton biomass. A deep peak in the distribution of phytoplankton abundance was found at 40-120 m. Maximum number of dividing cyanobacteria cells occurred at depths of 40-60 m. An estimate of picophytoplankton production shows that picophytoplankton accounts for 30-40% of total primary production.
Resumo:
Using gas chromatography technique we examined molecular composition of n-alkanes and lignin from bottom sediments of a core 385 cm long collected in the region of the Blake-Bahama Abyssal Plain. We determined C_org concentrations and lignin composition in soils, mangrove roots and leaves, in algae Sargassum and Ascophyllum, in corals and timber of a sunken ship; they were compared with data on lignin in bottom sediments. Mixed planktonogenic and terrigenous origin of organic matter in the core was proved with different proportions of terrigenous and planktonogenic components at different levels. Multiple changes in dominating sources of organic matter over a period required for accumulation of a four meter thick sedimentary sequence (about 4 m) are shown as obtained from changes in composition and contents of organic-chemical markers referring to classes of n-alkanes and phenols.
Resumo:
1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current
Resumo:
We present evidence that both geophysical and thermodynamic conditions in sea ice are important in understanding pathways of accumulation or rejection of hexachlorocyclohexanes (HCHs). a- and g-HCH concentrations and a-HCH enantiomer fractions have been measured in various ice classes and ages from the Canadian High Arctic. Mean a-HCH concentrations reached 0.642 ± 0.046 ng/L in new and young ice (<30 cm), 0.261 ±0.015 ng/L in the first-year ice (30-200 cm) and 0.208 ±0.045 in the old ice (>200 cm). Mean g-HCH concentrations were 0.066 ± 0.006 ng/L in new and young ice, 0.040 ±0.002 ng/L in the first-year ice and 0.040 ±0.007 ng/L in the old ice. In general, a-HCH concentrations and vertical distributions were highly dependent on the initial entrapment of brine and the subsequent desalination process. g-HCH levels and distribution in sea ice were not as clearly related to ice formation processes. During the year, first-year ice progressed from freezing (accumulation) to melting (ablation). Relations between the geophysical state of the sea ice and the vertical distribution of HCHs are described as ice passes through these thermodynamic states. In melting ice, which corresponded to the algal bloom period, the influence of biological processes within the bottom part of the ice on HCH concentrations and a-HCH enantiomer fraction is discussed using both univariate and multivariate approaches.
Resumo:
This paper constitutes a first detailed and systematic facies and biota description of an isolated carbonate knoll (Pee Shoal) in the Timor Sea (Sahul Shelf, NW Australia). The steep and flat-topped knoll is characterized by a distinct facies zonation comprising (A) soft sediments with scattered debris and scarce sponges, hydrozoans and crinoids (320-210 m water depth), (B) hardground outcrops (step-like banks, vertical cliffs) that are mainly colonized by octocorals and sponges (210-75 m), and (C) the summit region (75-21 m) where the slopes merge gently into the flat-topped summit that is densely colonized by massive and encrusting zooxanthellate corals and the octocoral Heliopora coerulea. In contrast, the sediments recovered from the summit are dominated by the green alga Halimeda, subordinate components are corals, benthic foraminifers, mollusks, and coralline red algae. Thus, the sediments are classified as chlorozoan grain assemblage. However, non-skeletal grains (fecal pellets, ooids) are almost completely absent. This discrepancy between the living biota and the sediment composition could reflect a disruption by the severe tropical cyclone Ingrid that hit the northern Australian shelf in March 2005, just before the sampling for this study took place (September 2005).
Resumo:
Based on data obtained at three stations in coastal waters of the Black Sea off Sevastopol in 2000 and 2001, we present seasonal dynamics of the carbon to chlorophyll a ratio in nano- and microphy-toplankton. This parameter varied approximately tenfold throughout the year. Its maximum values (442-500) were obtained in summer (July), when Pyrrophyta dominated in phytoplankton. Minimum values (36-56) were observed in winter (December),when diatomaceous species predominated. We derive a regression relating the carbon to chlorophyll a ratio to proportion of Pyrrophyta in total phytoplankton biomass, doing so separately for warm and cold seasons. Regression equations demonstrate coupled action of irradiance, temperature, and nutrient availability on the carbon to chlorophyll a ratio. For Pyrrophyta phytoplankton assemblage R**2 = 0.95, and for diatomaceous one R**2 = 0.87.
Resumo:
Character of metal accumulation in fractions of thalli of four species of marine green benthos algae under background and enhanced (0.3 mg/l) element concentrations in the environment was studied in short-term 24-hour experiments. Algae were shown to hold polysaccharide and protein mechanisms of metal accumulation. Variance analysis was applied to evaluate taxonomic and ecological features of metal distribution in fractions of thalli.