961 resultados para gel permeation chromatography
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nos últimos anos, o Ministério da Saúde do Brasil e a Organização Mundial da Saúde tem apoiado a investigação de novas tecnologias que possam contribuir para a vigilância, novos tratamentos e controle da leishmaniose visceral no país. Assim, o objetivo deste trabalho foi isolar compostos de plantas do bioma Caatinga, e investigar a toxicidade destes compostos contra as formas promastigotas e amastigotas de Leishmania infantum chagasi, principal parasita responsável pela leishmaniose visceral na América do Sul, e avaliar a sua capacidade para inibir a enzima acetil-colinesterase (AChE). Após a exposição aos compostos em estudo, foram realizados testes utilizando a forma promastigota que expressa luciferase e ELISA in situ para medir a viabilidade das formas promastigotas e amastigota, respectivamente. O ensaio colorimétrico MTT foi realizado para determinar a toxicidade destas substâncias utilizando células monocíticas murina RAW 264.7. Todos os compostos foram testados in vitro para as sua propriedade anti-colinesterásica. Um cumarina, escoparona, foi isolada a partir de hastes de Platymiscium floribundum, e os flavonóides, rutina e quercetina, foram isolados a partir de grãos de Dimorphandra gardneriana. Estes compostos foram purificados, utilizando cromatografia em coluna gel eluída com solventes orgânicos em misturas de polaridade crescente, e identificados por análise espectral. Nos ensaios leishmanicidas, os compostos fenólicos mostraram eficácia contra as formas extracelulares promastigotas, com EC50 para escoporona de 21.4µg/mL e para quercetina e rutina 26 e 30.3µg/mL, respectivamente. Os flavonóides apresentaram resultados comparáveis à droga controle, a anfotericina B, contra as formas amastigotas com EC50 para quercetina e rutina de 10.6 e 43.3µg/mL, respectivamente. Os compostos inibiram a enzima AChE com halos de inibição variando de 0,8 a 0,6cm, indicando um possível mecanismo de ação para a atividade leishmanicida.
Resumo:
The Hsp70 is an essential molecular chaperone in protein metabolism since it acts as a pivot with other molecular chaperone families. Several co-chaperones act as regulators of the Hsp70 action cycle, as for instance Hip (Hsp70-interacting protein). Hip is a tetratricopeptide repeat protein (TPR) that interacts with the ATPase domain in the Hsp70-ADP state, stabilizing it and preventing substrate dissociation. Molecular chaperones from protozoans, which can cause some neglected diseases, are poorly studied in terms of structure and function. Here, we investigated the structural features of Hip from the protozoa Leishmania braziliensis (LbHip), one of the causative agents of the leishmaniasis disease. LbHip was heterologously expressed and purified in the folded state, as attested by circular dichroism and intrinsic fluorescence emission techniques. LbHip forms an elongated dimer, as observed by analytical gel filtration chromatography, analytical ultracentrifugation and small angle X-ray scattering (SAXS). With the SAXS data a low resolution model was reconstructed, which shed light on the structure of this protein, emphasizing its elongated shape and suggesting its domain organization. We also investigated the chemical-induced unfolding behavior of LbHip and two transitions were observed. The first transition was related to the unfolding of the TPR domain of each protomer and the second transition of the dimer dissociation. Altogether. LbHip presents a similar structure to mammalian Hip, despite their low level of conservation, suggesting that this class of eukaryotic protein may use a similar mechanism of action. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The growth and the metabolism of Bifidobacterium adolescentis MB 239 fermenting GOS, lactose, galactose, and glucose were investigated. An unstructerd unsegregated model for growth of B. adolescentis MB 239 in batch cultures was developed and kinetic parameters were calculated with a Matlab algorithm. Galactose was the best carbon source; lactose and GOS led to lower growth rate and cellular yield, but glucose was the poorest carbon source. Lactate, acetate and ethanol yields allowed calculation of the carbon fluxes toward fermentation products. Similar distribution between 3- and 2-carbon products was observed on all the carbohydrates (45 and 55%, respectively), but ethanol production was higher on glucose than on GOS, lactose and galactose, in decreasing order. Based on the stoichiometry of the fructose 6-phosphate shunt and on the carbon distribution among the products, ATP yield was calculated on the different carbohydrates. ATP yield was the highest on galactose, while it was 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondance among ethanol production, low ATP yields, and low biomass production was established demonstrating that carbohydrate preferences may result from different sorting of carbon fluxes through the fermentative pathway. During GOS fermentation, stringent selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were first to be consumed, and a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that β-(1-4) galactosides can be hydrolysed before they are taken up. The physiology of Bifidobacterium adolescentis MB 239 toward xylooligosaccharides (XOS) was also studied and our attention was focused on an extracellular glycosyl-hydrolase (β-Xylosidase) expressed by a culture of B. adolescentis grown on XOS as sole carbon source. The extracellular enzyme was purified from the the supernatant, which was dialyzed and concentrated by ultrafiltration. A two steps purification protocol was developed: the sample was loaded on a Mono-Q anion exchange chromatography and then, the active fractions were pooled and β-Xylosidase was purified by gel filtration chromatography on a Superdex-75. The enzyme was characterized in many aspects. β- Xylosidase was an homo-tetramer of 160 kDa as native molecular mass; it was a termostable enzyme with an optimum of temperature at 53 °C and an optimum of pH of 6.0. The kinetics parameter were calculated: km = 4.36 mM, Vmax = 0.93 mM/min. The substrate specificity with different di-, oligo- and polysaccharides was tested. The reactions were carried out overnight at pH 7 and at the optimum of temperature and the carbohydrates hydrolysis were analyzed by thin layer chromatography (TLC). Only glycosyl-hydrolase activities on XOS and on xylan were detected, whereas sucrose, lactose, cellobiose, maltose and raffinose were not hydrolyzed. It’s clearly shown that β-Xylosidase activity was higher than the Xylanase one. These studies on the carbohydrate preference of a strain of Bifidobacterium underlined the importance of the affinity between probiotics and prebiotics. On the basis of this concept, together with Barilla G&R f.lli SpA, we studied the possibility to develop a functional food containing a synbiotic. Three probiotic strains Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 were studied to assess their suitability for utilization in synbiotic products on the basis of antioxidative activity, glutathione production, acid and bile tolerance, carbohydrates fermentation and viability in food matrices. Bile and human gastric juice resistance was tested in vitro to estimate the transit tolerance in the upper gastrointestinal tract. B. lactis and L. plantarum were more acid tolerant than S. thermophilus. All the strains resisted to bile. The growth kinetics on 13 prebiotic carbohydrates were determined. Galactooligosaccharides and fructo-oligosaccharides were successfully utilized by all the strains and could be considered the most appropriate prebiotics to be used in effective synbiotic formulations. The vitality of the three strains inoculated in different food matrices and maintained at room temperature was studied. The best survival of Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 was found in food chocolate matrices. Then an in vivo clinical trial was carried out for 20 healthy volunteers. The increase in faecal bifidobacteria and lactobacilli populations and the efficacy of the pre-prototype was promising for the future develop of potential commercial products.
Resumo:
Das Lichtsammlerprotein (light harvesting chlorophyll a/b-binding protein, LHCP) ist das Apoprotein des Haupt-Lichtsammelkomplexes (LHCII) und stellt das häufigste Membranprotein der Erde dar. Nicht nur aufgrund seiner Abundanz, sondern auch wegen seiner speziellen Translokation als stark hydrophobes Membranprotein durch hauptsächlich wässrige Milieus von cytosolischen Ribosomen bis in die Thylakoidmembran der Chloroplasten ist der Biogeneseweg dieses Proteins von besonderem Interesse. LHCP ist kernkodiert und wird nach seinem Import in Chloroplasten als Transitkomplex mit dem stromalen Signalerkennungsprotein (cpSRP) zur Thylakoide geleitet. Der cpSRP-Komplex besteht aus dem cpSRP43 mit Chaperonfunktion für das LHCP sowie dem Co-Chaperon cpSRP54, welches eine entscheidende Rolle in der stromalen Zielführung des Transitkomplexes spielt. Sowohl die Proteinkonformation des LHCP während seiner Biogenese als auch der in vivo Faltungsablauf während der Thylakoidinsertion sind noch völlig unklar. Mithilfe der Elektronen-paramagnetischen Resonanz (EPR-)Spektroskopie sollte in dieser Arbeit der Faltungszustand des LHCP im Transitkomplex mit dem cpSRP oder in Teilkomplexen davon ermittelt werden.rnKopplungen von cpSRP43 und LHCP bestätigten, dass das Chaperon als Minimaleinheit zur quantitativen Solubilisierung des Membranproteins genügt. Gelfiltrationschromatographische (GFC-) Untersuchungen solcher Komplexe wiesen jedoch mit einem apparenten MW von ≥ 600 kDa ein sehr hochmolekulares Laufverhalten auf. Variierende Proteinstöchiometrien im Komplex zeigten in densitometrischen Auswertungen eine undefinierte Aggregation. Zusätze von Agenzien zur Vermeidung unspezifischer Wechselwirkungen wie z.B. Detergentien oder auch Salzzugabe zeigten keinen Einfluss auf die Aggregate. Volllängen-Transitkomplexe dagegen wiesen trotz unterschiedlichem Angebot von Einzelproteinen reproduzierbar definierte Stöchiometrien auf. Diese zeigten eine LHCP:cpSRP43-Stöchiometrie von 1,25. Dennoch hatten diese Komplexe mit einem apparenten MW von > 300 kDa einen mindestens dimeren Assemblierungsgrad. Eine Voraussetzung für eindeutige EPR-spektroskopische Distanzmessungen zwischen definierten Positionen im LHCP ist jedoch dessen monomolekularisiertes Vorliegen im Chaperonkomplex. Die Darstellung von ternären Transitkomplexen mit einem zu erwartenden apparenten MW von ~175 kDa war auch durch Zusatz verschiedener Proteinaggregationshemmer nicht möglich. Transitkomplexe mit einer verkürzten Version des cpSRP54 zeigten schließlich eine definierte 1:1-Komplexstöchiometrie bei gleichzeitiger polydisperser Komplexzusammensetzung. Es konnten ~60% dieser sogenannten 54M-Transitkomplexe nach GFC-Daten und densitometrischer Auswertung als potentiell ternär eingeschätzt werden. Darüber hinaus gelang es solche Ansätze durch GFC-Fraktionierung zusätzlich von oligomerisierten Spezies aufzureinigen. Dennoch zeigten die Präparate vor GFC-Fraktionierung ein (noch) zu hohes Aggregationssignal im Hintergrund und nach Fraktionierung ein zu schwaches Signal, um eine eindeutige Aussage der EPR-Daten zuzulassen. Dennoch bietet dieses ausgearbeitete Komplexbildungsprotoll in Verbindung mit der Verwendung von verkürztem cpSRP54 eine solide Basis, um weitere Versuche zu EPR-Messungen an cpSRP-gebundenem LHCP durchzuführen. rn
Resumo:
A new snake protein, named bilinexin, has been purified from Agkistrodon bilineatus venom by ion-exchange chromatography and gel filtration chromatography. Under non-reducing conditions it has a mass of 110 kDa protein on SDS-PAGE. On reduction, it can be separated into five subunits with masses in the range 13-25 kDa. The N-terminal sequences of these subunits are very similar to those of convulxin or the alboaggregins, identifying bilinexin as a new member of the snake C-type lectin family, unusual in having multiple subunits. Bilinexin agglutinates fixed platelets. washed platelets and platelet rich plasma (PRP) without obvious activation (shape change) as confirmed by light microscope examination. Both inhibitory and binding studies indicate that antibodies against alpha2beta1 inhibit not only platelet agglutination induced by bilinexin, but also bilinexin binding to platelets. VM16d, a monoclonal anti-GPIbalpha antibody, completely inhibits platelet agglutination induced by bilinexin, and polyclonal antibodies against GPIbalpha prevent its binding to platelets. However, neither convulxin, polyclonal anti-GPVI antibodies, nor GPIIb/IIIa inhibitors affect its binding to and agglutination of platelets. Bilinexin neither activates GPIIb/IIIa integrin on platelets nor induces tyrosine phosphorylation of platelet proteins, nor increases intracellular Ca2+ in platelets. Like alboaggregin B, bilinexin agglutinates platelets, which makes it a good tool to investigate the differences in mechanism between snake C-type lectins causing platelet agglutination and those that induce full activation.
Resumo:
We present crystal structures of the Anabaena sensory rhodopsin transducer (ASRT), a soluble cytoplasmic protein that interacts with the first structurally characterized eubacterial retinylidene photoreceptor Anabaena sensory rhodopsin (ASR). Four crystal structures of ASRT from three different spacegroups were obtained, in all of which ASRT is present as a planar (C4) tetramer, consistent with our characterization of ASRT as a tetramer in solution. The ASRT tetramer is tightly packed, with large interfaces where the well-structured beta-sandwich portion of the monomers provides the bulk of the tetramer-forming interactions, and forms a flat, stable surface on one side of the tetramer (the beta-face). Only one of our four different ASRT crystals reveals a C-terminal alpha-helix in the otherwise all-beta protein, together with a large loop from each monomer on the opposite face of the tetramer (the alpha-face), which is flexible and largely disordered in the other three crystal forms. Gel-filtration chromatography demonstrated that ASRT forms stable tetramers in solution and isothermal microcalorimetry showed that the ASRT tetramer binds to ASR with a stoichiometry of one ASRT tetramer per one ASR photoreceptor with a K(d) of 8 microM in the highest affinity measurements. Possible mechanisms for the interaction of this transducer tetramer with the ASR photoreceptor via its flexible alpha-face to mediate transduction of the light signal are discussed.
Resumo:
Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^
Resumo:
A selection of PBDE congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography, and the analysis was performed on a GC-MS system operating in the NCI mode. The highest PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, and the lowest levels in fin whales and ringed seals. One-sided analyses of variance (ANOVA) followed by Tukey comparisons of means were applied to test for differences between years and sampling areas. Due to inter-year sampling variability, only general comparisons of PBDE concentrations between different sampling areas could be made. Differences in PBDE concentrations between three sampling periods, from 1986 to 2007, were evaluated in samples of pilot whales, ringed seals, white-sided dolphins and hooded seals. The highest PBDE levels were found in samples from the late 1990s or beginning of 2000, possibly reflecting the increase in the global production of technical PBDE mixtures in the 1990s. The levels of BDE #153 and #154 increased relative to the total PBDE concentration in some of the species in recent years, which may indicate an increased relative exposure to higher brominated congeners. In order to assess the effect of measures taken in legally binding international agreements, it is important to continuously monitor POPs such as PBDEs in sub-Arctic and Arctic environments.
Resumo:
Heavy contaminant load released into the Northern Dvina River during flooding increased the concentrations of aliphatic (AHC) and polcyclic aromatic (PAH) hydrocarbons in water and bottom sediments. The composition of hydrocarbons was different from that of the summer low flow season. The concentrations of dissolved and particulate AHC ranged from 12 to 106 and from 192 to 599 µg/l, respectively, and bottom sediments contained from 26.2 to 329 µg/g AHC and 4 to 1785 ng/g PAH. As the transformation of AHC occurred at low spring temperatures, the alkane composition was shown to be dominated by terrigenous compounds, whereas more stable PAH showed elevated contents of petrogenic and pyrogenic compounds. It was also shown that the Northern Dvina-Dvina Bay geochemical barrier prevents contaminant input into the White Sea, i.e., acts as a marginal filter.
Resumo:
A selection of MeO-BDE and BDE congeners were analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986-2009). The analytes were extracted and cleaned-up using open column extraction and multi-layer silica gel column chromatography. The analysis was performed using both low resolution and high resolution GC-MS. MeO-PBDE concentrations relative to total PBDE concentrations varied greatly between sampling periods and species. The highest MeO-PBDE levels were found in the toothed whale species pilot whale and white-sided dolphin, often exceeding the concentration of the most abundant PBDE, BDE-47. The lowest MeO-PBDE levels were found in fin whales and ringed seals. The main MeO-BDE congeners were 6-MeO-BDE47 and 2'-MeO-BDE68. A weak correlation only between BDE47 and its methoxylated analog 6-MeO-BDE47 was found and is indicative of a natural source for MeO-PBDEs.
Resumo:
The plant hormone indoleacetic acid (IAA) transcriptionally activates early genes in plants. The Aux/IAA family of early genes encodes proteins that are short-lived and nuclear-localized. They also contain a putative prokaryotic βαα DNA binding motif whose formation requires protein dimerization. Here, we show that the pea PS-IAA4 and Arabidopsis IAA1 and IAA2 proteins perform homo- and heterotypic interactions in yeast using the two-hybrid system. Gel-filtration chromatography and chemical cross-linking experiments demonstrate that the PS-IAA4 and IAA1 proteins interact to form homodimers in vitro. Deletion analysis of PS-IAA4 indicates that the βαα containing acidic C terminus of the protein is necessary for homotypic interactions in the yeast two-hybrid system. Screening an Arabidopsis λ-ACT cDNA library using IAA1 as a bait reveals heterotypic interactions of IAA1 with known and newly discovered members of the Arabidopsis Aux/IAA gene family. The new member IAA24 has similarity to ARF1, a transcription factor that binds to an auxin response element. Combinatorial interactions among the various members of the Aux/IAA gene family may regulate a variety of late genes as well as serve as autoregulators of early auxin-regulated gene expression. These interactions provide a molecular basis for the developmental and tissue-specific manner of auxin action.
Resumo:
RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.