968 resultados para ganglion cell complex
Resumo:
Protein C activation on the surface of the endothelium is critical to the negative regulation of blood coagulation. We now demonstrate that monoclonal antibodies that block protein C binding to the endothelial cell protein C receptor (EPCR) reduce protein C activation rates by the thrombin-thrombomodulin complex on endothelium, but that antibodies that bind to EPCR without blocking protein C binding have no effect. The kinetic result of blocking the EPCR-protein C interaction is an increased apparent Km for the activation without altering the affinity of thrombin for thrombomodulin. Activation rates of the protein C derivative lacking the gamma-carboxyglutamic acid domain, which is required for binding to EPCR, are not altered by the anti-EPCR antibodies. These data indicate that the protein C activation complex involves protein C, thrombin, thrombomodulin, and EPCR. These observations open new questions about the control of coagulation reactions on vascular endothelium.
Resumo:
Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.
Resumo:
The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (mIg) molecule and the Ig-alpha/Ig-beta heterodimer, which functions as signaling subunit of the receptor. Stimulation of the BCR activates protein tyrosine kinases (PTKs) that phosphorylate a number of substrate proteins, including the Ig-alpha/Ig-beta heterodimer of the BCR itself. How the PTKs become activated after BCR engagement is not known at present. Here, we show that BCR-negative J558L cells treated with the protein tyrosine phosphatase inhibitor pervanadate/H2O2 display only a weak substrate phosphorylation. However, in BCR-positive transfectants of J558L, treatment with pervanadate/H2O2 induces a strong phosphorylation of several substrate proteins. Treatment with pervanadate/H2O2 does not result in receptor crosslinking, yet the pattern of protein phosphorylation is similar to that observed after BCR stimulation by antigen. The response requires cellular integrity because tyrosine phosphorylation of most substrates is not visible in cell lysates. Cells that express a BCR containing an Ig-alpha subunit with a mutated immunoreceptor tyrosine-based activation motif display a delayed response. The data suggest that, once expressed on the surface, the BCR organizes protein tyrosine phosphatases, PTKs, and their substrates into a transducer complex that can be activated by pervanadate/H202 in the absence of BCR crosslinking. Assembly of this preformed complex seems to be a prerequisite for BCR-mediated signal transduction.
Resumo:
Natural killer (NK) cells expressing specific p58 NK receptors are inhibited from lysing target cells that express human leukocyte antigen (HLA)-C class I major histocompatibility complex molecules. To investigate the interaction between p58 NK receptors and HLA-Cw4, the extracellular domain of the p58 NK receptor specific for HLA-Cw4 was overexpressed in Escherichia coli and refolded from purified inclusion bodies. The refolded NK receptor is a monomer in solution. It interacts specifically with HLA-Cw4, blocking the binding of a p58-Ig fusion protein to HLA-Cw4-expressing cells, but does not block the binding of a p58-Ig fusion protein specific for HLA-Cw3 to HLA-Cw3-expressing cells. The bacterially expressed extracellular domain of HLA-Cw4 heavy chain and beta2-microglobulin were refolded in the presence of a HLA-Cw4-specific peptide. Direct binding between the soluble p58 NK receptor and the soluble HLA-Cw4-peptide complex was observed by native gel electrophoresis. Titration binding assays show that soluble monomeric receptor forms a 1:1 complex with HLA-Cw4, independent of the presence of Zn2+. The formation of complexes between soluble, recombinant molecules indicates that HLA-Cw4 is sufficient for specific ligation by the NK receptor and that neither glycoprotein requires carbohydrate for the interaction.
Resumo:
We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.
Resumo:
Graft-versus-host disease (GVHD) is a T-cell-mediated disease of transplanted donor T cells recognizing host alloantigens. Data presented in this report show, to our knowledge, for the first time that a synthetic copolymer of the amino acids L-Glu, L-Lys, L-Ala, and L-Tyr (molecular ratio, 1.9:6.0:4.7:1.0; Mr, 6000-8500) [corrected], termed GLAT, with promiscuous binding to multiple major histocompatibility complex class II alleles is capable of preventing lethal GVHD in the B10.D2 --> BALB/c model (both H-2d) across minor histocompatibility barriers. Administration of GLAT over a limited time after transplant significantly reduced the incidence, onset, and severity of disease. GLAT also improved long-term survival from lethal GVHD: 14/25 (56%) of experimental mice survived > 140 days after transplant compared to 2/26 of saline-treated or to 1/10 of hen egg lysozyme-treated control mice (P < 0.01). Long-term survivors were documented to be fully chimeric by PCR analysis of a polymorphic microsatellite region in the interleukin 1beta gene. In vitro, GLAT inhibited the mixed lymphocyte culture in a dose-dependent fashion across a variety of major barriers tested. Furthermore, GLAT inhibited the response of nylon wool-enriched T cells to syngeneic antigen-presenting cells presenting minor histocompatibility antigens. Prepulsing of the antigen-presenting cells with GLAT reduced the proliferative response, suggesting that GLAT inhibits antigen presentation.
Resumo:
Administration of virus-specific antibodies is known to be an effective early treatment for some viral infections. Such immunotherapy probably acts by antibody-mediated neutralization of viral infectivity and is often thought to function independently of T-cell-mediated immune responses. In the present experiments, we studied passive antibody therapy using Friend murine leukemia virus complex as a model for an immunosuppressive retroviral disease in adult mice. The results showed that antibody therapy could induce recovery from a well-established retroviral infection. However, the success of therapy was dependent on the presence of both CD4+ and CD8+ T lymphocytes. Thus, cell-mediated responses were required for recovery from infection even in the presence of therapeutic levels of antibody. The major histocompatibility type of the mice was also an important factor determining the relative success of antibody therapy in this system, but it was less critical for low-dose than for high-dose infections. Our results imply that limited T-cell responsiveness as dictated by major histocompatibility genes and/or stage of disease may have contributed to previous immunotherapy failures in AIDS patients. Possible strategies to improve the efficacy of future therapies are discussed.
Resumo:
The nature of the alloreactive T-cell response is not yet clearly understood. These strong cellular responses are thought to be the basis of allograft rejection and graft-vs.-host disease. The question of the extent of responding T-cell repertoires has so far been addressed by cellular cloning, often combined with molecular T-cell receptor (TCR) analysis. Here we present a broad repertoire analysis of primed responder cells from mixed lymphocyte cultures in which two different DR1/3 responders were stimulated with DR3/4 cells. Repertoire analysis was performed by TCR spectratyping, a method by which T cells are analyzed on the basis of the complementarity-determining region 3 length of different variable region (V) families. Strikingly, both responders showed very similar repertoires when the TCR V beta was used as a lineage marker. This was not seen when TCR V alpha was analyzed. A different pattern of TCR V beta was observed if the stimulating alloantigen was changed. This finding indicates that alloreactive T cells form a specific repertoire for each alloantigen. Since conservation appears to be linked to TCR V beta, the question of different roles of alpha and beta chains in allorecognition is raised.
Resumo:
Recombinant adenoviruses are attractive vehicles for liver-directed gene therapy because of the high efficiency with which they transfer genes to hepatocytes in vivo. First generation recombinant adenoviruses deleted of E1 sequences also express recombinant and early and late viral genes, which lead to development of destructive cellular immune responses. Previous studies indicated that class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTLs) play a major role in eliminating virus-infected cells. The present studies utilize mouse models to evaluate the role of T-helper cells in the primary response to adenovirus-mediated gene transfer to the liver. In vivo ablation of CD4+ cells or interferon gamma (IFN-gamma) was sufficient to prevent the elimination of adenovirus-transduced hepatocytes, despite the induction of a measurable CTL response. Mobilization of an effective TH1 response as measured by in vitro proliferation assays was associated with substantial upregulation of MHC class I expression, an effect that was prevented in IFN-gamma-deficient animals. These results suggest that elimination of virus-infected hepatocytes in a primary exposure to recombinant adenovirus requires both induction of antigen-specific CTLs as well as sensitization of the target cell by TH1-mediated activation of MHC class I expression.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.
Resumo:
Most of the gemcitabine (dFdC) resistant cell lines manifested high NF?B activity. The NF?B activity can be induced by dFdC and 5-FU exposure. The chemosensitizing effect of disulfiram (DS), an anti-alcoholism drug and NF?B inhibitor, and copper (Cu) on the chemoresistant cell lines was examined. The DS/Cu complex significantly enhanced the cytotoxicity of dFdC (resistant cells: 12.2–1085-fold) and completely reversed the dFdC resistance in the resitant cell lines. The dFdC-induced NF?B activity was markedly inhibited by DS/Cu complex. The data from this study indicated that DS may be used in clinic to improve the therapeutic effect of dFdC in breast and colon cancer patients.
Resumo:
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the a5ß1 integrins, but not a4ß1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of a5ß1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCa and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.