203 resultados para gabaa
Resumo:
Tonic conductance mediated by extrasynaptic GABAA receptors has been implicated in the modulation of network oscillatory activity. Using an in vitro brain slice to produce oscillatory activity and a kinetic model of GABAA receptor dynamics, we show that changes in tonic inhibitory input to fast spiking interneurons underlie benzodiazepine-site mediated modulation of neuronal network synchrony in rat primary motor cortex. We found that low concentrations (10 nM) of the benzodiazepine site agonist, zolpidem, reduced the power of pharmacologically-induced beta-frequency (15–30 Hz) oscillatory activity. By contrast, higher doses augmented beta power. Application of the antagonist, flumazenil, also increased beta power suggesting endogenous modulation of the benzodiazepine binding site. Voltage-clamp experiments revealed that pharmacologically-induced rhythmic inhibitory postsynaptic currents were reduced by 10 nM zolpidem, suggesting an action on inhibitory interneurons. Further voltage -clamp studies of fast spiking cells showed that 10 nM zolpidem augmented a tonic inhibitory GABAA receptor mediated current in fast spiking cells whilst higher concentrations of zolpidem reduced the tonic current. A kinetic model of zolpidem-sensitive GABAA receptors suggested that incubation with 10 nM zolpidem resulted in a high proportion of GABAA receptors locked in a kinetically slow desensitized state whilst 30 nM zolpidem favoured rapid transition into and out of desensitized states. This was confirmed experimentally using a challenge with saturating concentrations of GABA. Selective modulation of an interneuron-specific tonic current may underlie the reversal of cognitive and motor deficits afforded by low-dose zolpidem in neuropathological states.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Arginine vasopressin (AVP), a nine amino acid neuropeptide (CYFQNCPRG- NH2) fulfills a dual function: (i) in the periphery, AVP acts as a peptide hormone and (ii) in the CNS, AVP is a neuromodulatory peptide. AVP produces its effects through 3 AVP receptors (AVPRs). AVPR1a and AVPR1b are expressed in the CNS and periphery, whilst AVPR2 is not found centrally but instead solely expressed in the kidneys. Recent evidence revealed a high density of AVP-binding sites in the juxtacapsular nucleus of the bed nucleus of the stria terminalis (jxBNST). While in other regions of the brain, AVP acts at AVPRs to regulate an array of biological processes, including male-typical social behaviours, social memory, stress adaptation, fear, anxiety, and fluid homeostasis, its role in the jxBNST remains elusive. Furthermore, the neurophysiological properties of AVP in the jxBNST are unknown so this study aimed to examine how AVP modulates synaptic transmission in the rat jxBNST. The BNST being one of the most notable sexually dimorphic brain regions and AVPR expression being influenced by gonadal steroids, we investigated the putative influence of sex on the modulatory effects of AVP in the jxBNST. Finally, due to AVP being released at a substantially higher concentration following periods of water deprivation, we examined changes in AVPs modulatory role following water deprivation. Male and female Long Evans rats were euthanized and brain slice whole-cell voltage-clamp electrophysiology was done in the jxBNST to measure the effects of AVP on synaptic transmission of GABA synapses. Exogenous application of AVP produced three responses; either postsynaptic long-term potentiation (LTP) of GABAA-inhibitory postsynaptic currents (IPSC), postsynaptic long-term depression (LTD) of GABAA-IPSC, or no change in GABAA-IPSC amplitudes. Interestingly, the proportion of neurons responding in each of these ways did not differ between sexes and within females was not estrous cycle-dependent. Finally, although not statistically significant, 24-hour water deprivation abolished GABAA-LTD, an effect that was not a consequence of social isolation. Taken together, our data show that AVP modulates GABAA synaptic transmission in the jxBNST in fluid homeostasis- but not sex-dependent manner.
Resumo:
SCHEFFZUK, C. , KUKUSHKA, V. , VYSSOTSKI, A. L. , DRAGUHN, A. , TORT, A. B. L. , BRANKACK, J. . Global slowing of network oscillations in mouse neocortex by diazepam. Neuropharmacology , v. 65, p. 123-133, 2013.
Resumo:
SCHEFFZUK, C. , KUKUSHKA, V. , VYSSOTSKI, A. L. , DRAGUHN, A. , TORT, A. B. L. , BRANKACK, J. . Global slowing of network oscillations in mouse neocortex by diazepam. Neuropharmacology , v. 65, p. 123-133, 2013.
Resumo:
Alcohol is one of the oldest and most widely used drugs on the planet, but the cellular mechanisms by which it affects neural function are still poorly understood. Unlike other drugs of abuse, alcohol has no specific receptor in the nervous system, but is believed to operate through GABAergic and serotonergic neurotransmitter systems. Invertebrate models offer circuits of reduced numerical complexity and involve the same cell types and neurotransmitter systems as vertebrate circuits. The well-understood neural circuits controlling crayfish escape behavior offer neurons that are modulated by GABAergic inhibition, thus making tail-flip circuitry an effective circuit model to study the cellular mechanisms of acute alcohol exposure. Crayfish are capable of two stereotyped, reflexive escape behaviors known as tail-flips that are controlled by two different pairs of giant interneurons, the lateral giants (LG) and the medial giants (MG). The LG circuit has been an established model in the neuroscience field for more than 60 years and is almost completely mapped out. In contrast, the MG is still poorly understood, but has important behavioral implications in social behavior and value-based decision making. In this dissertation, I show that both crayfish tail-flip circuitry are physiologically sensitive to relevant alcohol concentrations and that this sensitivity is observable on the single cell level. I also show that this ethyl alcohol (EtOH) sensitivity in the LG can be changed by altering the crayfish’s recent social experience and by removing descending inputs to the LG. While the MG exhibits similar physiological sensitivity, its inhibitory properties have never been studied before this research. Through the use of electrophysiological and pharmacological techniques, I show that the MG exhibits many similar inhibitory properties as the LG that appear to be the result of GABA-mediated chloride currents. Finally, I present evidence that the EtOH-induced changes in the MG are blocked through pre-treatment of the potent GABAA receptor agonist, muscimol, which underlines the role of GABA in EtOH’s effects on crayfish tail-flip circuitry. The work presented here opens the way for crayfish tail-flip circuitry to be used as an effective model for EtOH’s acute effects on aggression and value-based decision making.
Resumo:
The aim of the present study was to investigate the effects of the stimulation and inhibition of the ventral part of the medial prefrontal cortex (infralimbic cortex) on basal and stress-induced plasma levels of corticosterone and on the acquisition of aversive memory in animals maintained in control and environmental enrichment (EE) conditions. Intracortical microinjections of the GABAA antagonist picrotoxin and agonist muscimol were performed in male Wistar rats to stimulate and inhibit, respectively, the activity of the infralimbic cortex. Injections were performed 60 min before foot shock stress and training in the inhibitory avoidance task. Picrotoxin injections into the infralimbic cortex increased basal plasma levels of corticosterone. These increases were higher in EE rats which suggest that EE enhances the control exerted by infralimbic cortex over the hypothalamus-pituitary-adrenal (HPA) axis and corticosterone release. Muscimol injections into the infralimbic cortex reduced the stress-induced plasma levels of corticosterone and the retention latency 24 h after training in the inhibitory avoidance performance in control and EE animals, respectively. These results further suggest that the infralimbic cortex is required for the activation of the HPA axis during stress and for the acquisition of contextual aversive memories.
Resumo:
El objetivo de este estudio es establecer si la dexmedetomidina (DEX) es segura y efectiva para el manejo coadyuvante de síndrome de abstinencia a alcohol (SAA) a través de la búsqueda de evidencia científica. Metodología: se realiza una revisión sistemática de literatura publicada y no publicada desde enero de 1989 hasta febrero 2016 en PubMed, Embase, Scopus, Bireme, Cochrane library y en otras bases de datos y portales. Los criterios de inclusión fueron ensayos clínicos aleatorizados y no aleatorizados, estudios cuasi-experimentales, estudios de cohorte, y estudios de casos y controles; que incluyeron pacientes mayores de 18 años hospitalizados con diagnóstico de SAA y donde se usó DEX como terapia coadyuvante. Resultados: 7 estudios, 477 pacientes, se incluyeron en el análisis final. Se encontraron dos ensayos clínicos aleatorizados, tres estudios de casos y controles y dos estudios de cohorte retrospectivo. Solo uno de los estudios fue doble ciego y utilizó placebo como comparador. Análisis y conclusiones: en los estudios experimentales se determinan que el uso de DEX como terapia coadyuvante en el manejo de SAA tiene significancia clínica y estadística para disminuir dosis de BZD en las primeras 24 horas de tratamiento; pero no demostraron tener otros beneficios clínicos. En los estudios no aleatorizados existe consenso que relaciona el uso de DEX con menores dosis de BZD de forma temprana. Recomendaciones: no se recomienda el uso de DEX en SAA de forma rutinaria. Se recomienda usar DEX solo en casos en el que exista evidencia fallo terapéutico a BZD.