945 resultados para full-scale testing
Resumo:
This study investigates the intra-individual stability of the speed of several motor tasks and the intensity of associated movements in 256 children (131 girls, 125 boys) from the Zurich generational study using the Zurich neuromotor assessment battery (ZNA) over a 12-year period from the age of 6 to 18 years. The stability was assessed by correlograms of standard deviation scores calculated from age- and gender-adjusted normative values and compared with standing height and full scale intelligence quotient (IQ). While motor tasks of hand, finger and foot (HFT) and contralateral associated movements (CAM) exhibited a moderate stability (summary measure as correlation coefficients between two measurements made 4 years apart: .61 and .60), other tasks (dynamic balance, static balance and pegboard) were only weakly stable (.46, .47 and .49). IQ and height were more stable than neuromotor components (.72 and .86). We conclude that the moderately stable HFT and CAM may reflect "motor traits", while the stability of the pegboard and balance tasks is weaker because these skills are more experience related and state-dependent.
Resumo:
The Iowa Lottery has failed to adequately protect its customers from fraud and theft by retailers. That is the key conclusion of the Iowa Citizens’ Aide/Ombudsman in a critical report released today. The 210-page report, which makes 60 recommendations to the Lottery, is the culmination of a year-and-a-half-long investigation into how the Lottery polices and prevents retailer fraud and theft. In general, the Ombudsman found that the Lottery has maintained a weak, reactive enforcement system that fails to detect retailer dishonesty independently of customer complaints. This means that there likely have been instances of fraud – possibly largescale fraud – that have gone undetected. The Ombudsman’s examination marks the first time the Iowa Lottery’s investigative files have been audited by an outside authority. It also appears to be the first full-scale investigation of its kind in the United States.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
Rockfall is an extremely rapid process involving long travel distances. Due to these features, when an event occurs, the ability to take evasive action is practically zero and, thus, the risk of injury or loss of life is high. Damage to buildings and infrastructure is quite likely. In many cases, therefore, suitable protection measures are necessary. This contribution provides an overview of previous and current research on the main topics related to rockfall. It covers the onset of rockfall and runout modelling approaches, as well as hazard zoning and protection measures. It is the aim of this article to provide an in-depth knowledge base for researchers and practitioners involved in projects dealing with the rockfall protection of infrastructures, who may work in the fields of civil or environmental engineering, risk and safety, the earth and natural sciences.
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Each year several prestressed concrete girder bridges in Iowa and other states are struck and damaged by vehicles with loads too high to pass under the bridge. Whether or not intermediate diaphragms play a significant role in reducing the effect of these unusual loading conditions has often been a topic of discussion. A study of the effects of the type and location of intermediate diaphragms in prestressed concrete girder bridges when the bridge girder flanges were subjected to various levels of vertical and horizontal loading was undertaken. The purpose of the research was to determine whether steel diaphragms of any conventional configuration can provide adequate protection to minimize the damage to prestressed concrete girders caused by lateral loads, similar to the protection provided by the reinforced concrete intermediate diaphragms presently being used by the Iowa Department of Transportation. The research program conducted and described in this report included the following: A comprehensive literature search and survey questionnaire were undertaken to define the state-of-the-art in the use of intermediate diaphragms in prestressed concrete girder bridges. A full scale, simple span, restressed concrete girder bridge model, containing three beams was constructed and tested with several types of intermediate diaphragms located at the one-third points of the span or at the mid-span. Analytical studies involving a three-dimensional finite element analysis model were used to provide additional information on the behavior of the experimental bridge. The performance of the bridge with no intermediate diaphragms was quite different than that with intermediate diaphragms in place. All intermediate diaphragms tested had some effect in distributing the loads to the slab and other girders, although some diaphragm types performed better than others. The research conducted has indicated that the replacement of the reinforced concrete intermediate diaphragms currently being used in Iowa with structural steel diaphragms may be possible.
Resumo:
Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other roadside hazards. For an existing W-beam guardrail system installed adjacent to the roadway and near the work zone, guardrail sections are removed in order to place the portable concrete barrier system. The focus of this research study was to develop a proper stiffness transition between W-beam guardrail and portable concrete barrier systems. This research effort was accomplished through development and refinement of design concepts using computer simulation with LS-DYNA. Several design concepts were simulated, and design metrics were used to evaluate and refine each concept. These concepts were then analyzed and ranked based on feasibility, likelihood of success, and ease of installation. The rankings were presented to the Technical Advisory Committee (TAC) for selection of a preferred design alternative. Next, a Critical Impact Point (CIP) study was conducted, while additional analyses were performed to determine the critical attachment location and a reduced installation length for the portable concrete barriers. Finally, an additional simulation effort was conducted in order to evaluate the safety performance of the transition system under reverse-direction impact scenarios as well as to select the CIP. Recommendations were also provided for conducting a Phase II study and evaluating the nested Midwest Guardrail System (MGS) configuration using three Test Level 3 (TL-3) full-scale crash tests according to the criteria provided in the Manual for Assessing Safety Hardware, as published by the American Association of Safety Highway and Transportation Officials (AASHTO).
Resumo:
Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, interactive, full-scale, three-dimensional (3D) models of highway infrastructure. For this project, the highway infrastructure element chosen was a two-way, stop-controlled intersection (TWSCI). VirtuTrace, a virtual reality simulation engine developed by the principal investigator, was used to construct the dynamic 3D model of the TWSCI. The model was implemented in C6, which is Iowa State University’s Cave Automatic Virtual Environment (CAVE). Representatives from the Institute of Transportation at Iowa State University, as well as representatives from the Iowa Department of Transportation, experienced the simulated TWSCI. The two teams identified verbally the significant potential that the approach introduces for the application of next-generation simulated environments to road design and safety evaluation.
Resumo:
This investigation is the final phase of a three part study whose overall objectives were to determine if a restraining force is required to prevent inlet uplift failures in corrugated metal pipe (CMP) installations, and to develop a procedure for calculating the required force when restraint is required. In the initial phase of the study (HR-306), the extent of the uplift problem in Iowa was determined and the forces acting on a CMP were quantified. In the second phase of the study (HR- 332), laboratory and field tests were conducted. Laboratory tests measured the longitudinal stiffness ofCMP and a full scale field test on a 3.05 m (10 ft) diameter CMP with 0.612 m (2 ft) of cover determined the soil-structure interaction in response to uplift forces. Reported herein are the tasks that were completed in the final phase of the study. In this phase, a buried 2.44 m (8 ft) CMP was tested with and without end-restraint and with various configurations of soil at the inlet end of the pipe. A total of four different soil configurations were tested; in all tests the soil cover was constant at 0.61 m (2 ft). Data from these tests were used to verify the finite element analysis model (FEA) that was developed in this phase of the research. Both experiments and analyses indicate that the primary soil contribution to uplift resistance occurs in the foreslope and that depth of soil cover does not affect the required tiedown force. Using the FEA, design charts were developed with which engineers can determine for a given situation if restraint force is required to prevent an uplift failure. If an engineer determines restraint is needed, the design charts provide the magnitude of the required force. The design charts are applicable to six gages of CMP for four flow conditions and two types of soil.
Resumo:
The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. As a result, there has been a progressive move among state Departments of Transportation (DOTs) toward an increased use of the LRFD in geotechnical design practices. For the above reasons, the Iowa Highway Research Board (IHRB) sponsored three research projects: TR-573, TR-583 and TR-584. The research information is summarized in the project web site (http://srg.cce.iastate.edu/lrfd/). Two reports of total four volumes have been published. Report volume I by Roling et al. (2010) described the development of a user-friendly and electronic database (PILOT). Report volume II by Ng et al. (2011) summarized the 10 full-scale field tests conducted throughout Iowa and data analyses. This report presents the development of regionally calibrated LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, focusing on the strength limit states and incorporating the construction control aspects and soil setup into the design process. The calibration framework was selected to follow the guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO), taking into consideration the current local practices. The resistance factors were developed for general and in-house static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control. The following notable benefits to the bridge foundation design were attained in this project: 1) comprehensive design tables and charts were developed to facilitate the implementation of the LRFD approach, ensuring uniform reliability and consistency in the design and construction processes of bridge pile foundations; 2) the results showed a substantial gain in the factored capacity compared to the 2008 AASHTO-LRFD recommendations; and 3) contribution to the existing knowledge, thereby advancing the foundation design and construction practices in Iowa and the nation.
Resumo:
For several years the Iowa Department of Transportation (DOT), Iowa State University, the Federal Highway Administration, and several Iowa counties have been working to develop accelerated bridge construction (ABC) concepts, details, and processes. Throughout this development, much has been learned and has resulted in Iowa being viewed as a national leader in the area of ABC. However, at this time, the Office of Bridges and Structures does not have a complete set of working standards nor design examples to accompany ABC portions of the bridge design manual (now called the Load and Resistance Factor Design/LRFD Bridge Design Manual). During the fall of 2013, the Iowa DOT constructed a bridge on IA 92 in Cass County using an ABC technique known as slide-in bridge construction. During the design of the Cass County Bridge, several questions were raised about the performance of critical design and construction details: the pile-to-pile cap connection and the polytetrafluoroethylene (PTFE) coated bearing pads on which the bridge would slide. The timing of this specific need and the initiation of this project offered a unique opportunity to provide significant short- and long-term value to the Office of Bridges and Structures. Several full-scale laboratory tests, which included several variations of the pile-to-pile cap connection and bearing pad slides, were completed. These tests proved that the connection was capable of achieving the desired capacity and that the expected coefficient of friction of the bearing pads was reasonably low. Finally, a design tool was developed for the Office of Bridges and Structures to be used on future projects that might benefit from a precast pile cap.
Resumo:
When conducting research in different cultural settings, assessing measurement equivalence is of prime importance to determine if constructs and scores can be compared across groups. Structural equivalence implies that constructs have the same meaning across groups, metric equivalence implies that the metric of the scales remains stable across groups, and full scale or scalar equivalence implies that the origin of the scales is the same across groups. Several studies have observed that the structure underlying both normal personality and personality disorders (PDs) is stable across cultures. Most of this cross-cultural research was conducted in Western and Asian cultures. In Africa, the few studies were conducted with well-educated participants using French or English instruments. No research was conducted in Africa with less privileged or preliterate samples. The aim of this research was to study the structure and expression of normal and abnormal personality in an urban and a rural sample in Burkina Faso. The sample included 1,750 participants, with a sub-sample from the urban area of Ouagadougou (n = 1,249) and another sub-sample from a rural village, Soumiaga (n = 501). Most participants answered an interview consisting of a Mooré language adaptation of the Revised NEO Personality Inventory and of the International Personality Disorders Examination. Mooré is the language of the Mossi ethnic group, and the most frequently spoken local language in Burkina Faso. A sub-sample completed the same self-report instruments in French. Demographic variables only had a small impact on normal and abnormal personality traits mean levels. The structure underlying normal personality was unstable across regions and languages, illustrating that translating a complex psychological inventory into a native African language is a very difficult task. The structure underlying abnormal personality and the metric of PDs scales were stable across regions. As scalar equivalence was not reached, mean differences cannot be interpreted. Nevertheless, these differences could be due to an exaggerated expression of abnormal traits valued in the two cultural settings. Our results suggest that studies using a different methodology should be conducted to understand what is considered, in different cultures, as deviating from the expectations of the individual's culture, and as a significant impairment in self and interpersonal functioning, as defined by the DSM-5.
Resumo:
A noise wall was investigated to assess its effect on snow accumulation and air quality. Wind tunnel studies were undertaken to evaluate (a) possible snow accumulations and (b) the dispersion of particulate concentrations (dust, smoke, and lead particles) and carbon monoxide. Full-scale monitoring of particulate concentrations and carbon monoxide was performed both before and after the noise wall was constructed. The wind tunnel experiments for snow accumulation were conducted on a model wall located in a flat, unobstructed area. A separated flow zone existed upwind of the wall and snow immediately began to accumulate over most of the separated zone. Having the noise wall in an aerodynamically rough area, such as in an urban area as this one was, substantially decreased the amount of snow collected, compared with in the wind tunnel studies, because of turbulence reducing the separation zone. The snow accumulation has not been significantly greater with the noise wall in place than it was before construction and has proven to be of no concern to date. Monitoring for particulate concentrations has shown that the noise wall has had a beneficial effect because the amount of material collected was reduced. With the noise wall in place, monitoring for carbon monoxide has indicated that (a) for equivalent emissions under conditions of high atmospheric stability and low wind speeds, the carbon monoxide levels would be lower; and (b) under conditions of low atmospheric stability and high wind speeds, the carbon monoxide levels would be higher than expected without the wall in place.
Resumo:
Työn tavoitteena oli selvittää, kuinka tehokkaasti pystytään aktiivilieteprosessin läpikäynyttä, jälkiselkeytettyä vettä edelleen puhdistamaan flotaatiolla ennen sen johtamista vesistöön. Tarkoituksena oli löytää sellaiset kemikaalit ja näiden annokset, joilla tehtaalle asetetut jätevesien lupa-arvot voitaisiin huonossa tilanteessa, jätevesikuormitushuippujen aikana alittamaan. Työn kirjallisessaosassa tarkasteltiin lyhyesti, minkälaista jätevesikuormaa mekaanista massaa valmistavalta tehtaalta yleensä syntyy ja millaiset ovat tavanomaiset puhdistusmenetelmät. Myös flotaation teoriaa esiteltiin. Kokeellinen osa koostui kolmesta päävaiheesta: esi- eli niin sanotuista kuppikokeista, pilot-flotaatiokoeajoista jalaitosmittakaavan flotaatiokoeajoista. Esikokeet tehtiin niin kutsutulla Jar Test -laitteistolla ja pilot-flotaatiolaitteistona työssä käytettiin YIT:n valmistamaa pilot-flotaattoria. Laitosmittakaavan flotaatioaltaat olivat aikaisemmin biolietteen tiivistykseen käytettyjä, myöhemmin tertiääripuhdistukseen modifioituja flotaatioaltaita. Laitosmittakaavan flotaatiokoeajoissa testattiin neljän eri saostuskemikaalin ¿ polyalumiinikloridin (KEMPAC 18), rautapitoisen alumiinisulfaatin (AVR), ferrisulfaatin ja alumiinisulfaatin ¿ tehokkuutta tertiäärivaiheessa käsiteltävän veden puhdistajana. Esi- ja pilot-kokeiden perusteella laitosmittakaavan kokeisiin valittiin saostuskemikaalien rinnalle polymeeriksi Superfloc C 491. AVR- ja alumiinisulfaattiannokset laitosmittakaavan kokeissa olivat 200 ppm ja 400 ppm. KEMPAC 18- ja ferrisulfaattiannokset olivat 200ppm, 400 ppm ja 600 ppm. Polymeeriannos kokeissa oli pääasiassa 1,2 ppm. Tertiäärivaiheeseen tulevasta vedestä ja poistuvasta kirkasteesta määritettiin kiintoaine, pH, liukoinen ja kokonais-COD, liukoinen ja kokonaisfosfori sekä liukoinen ja kokonaistyppi. Laitosmittakaavan koeajojen tulosten mukaan eniten tertiäärivaiheessa saatiin käsiteltävästä vedestä erotettua fosforia ja toiseksi eniten COD:ta. Typpireduktiot olivat verrattain alhaiset ja myös kiintoainereduktiot jäivät usein pieniksi tai olivat jopa negatiiviset. Kaikki saostuskemikaalit saostivat COD- ja ravinnekuormaa. Eniten kuormaa saostuskemikaaleista saatiin erotettua AVR:llä ja toiseksi eniten KEMPAC 18:lla. Laitteistojen käyttökustannuksia huomioimatta AVR olisi edullisin vaihtoehto saostuskemikaaaliksietenkin pidempiaikaisessa käytössä. Lisäksi työssä tutkittiin polymeeriannoksen kasvattamisen 1,2 ppm:stä 2,5 ppm:ään vaikutusta puhdistustulokseen, kun saostuskemikaaliannos pidettiin vakiona. Tulosten mukaan polymeeriannoksen kasvattaminen kasvatti kokonais-COD- ja kokonaisfosforireduktiota. Myöslaitosmittakaavan flotaatioaltaiden pohjaputkistoja vertailtiin kiintoainereduktioiden perusteella. Kokeissa saatujen tulosten mukaan ei voitu sanoa, oliko toisen altaan pitkä kirkasteenpoistoputki vai toisen altaan lyhyt kirkasteenpoistoputki parempi vaihtoehto.
Resumo:
Työn kirjallisuusosassa esitellään paperi- ja kartonkikoneiden kiertovoitelujärjestelmien rakennetta ja voitelussa käytettyjen öljyjen ominaisuuksia. Lisäksi on selvitetty voiteluöljyn kunnossapidon kannalta keskeisten epäpuhtauksien kuten veden, hiukkasten ja ilmakuplien analysointia. Suurissa voitelujärjestelmissä öljyn suuri ilmapitoisuus on usein ongelma, mihin ei ole ollut selkeää ratkaisua. Työn tavoitteena oli tutkia ilmakuplien poistamista voiteluöljystä alipainekäsittelyn avulla. Alipaineen vaikusta eri öljyille ja lämpötiloilla tutkittiin laboratoriossa standarditestillä ja määritettiin sopiva alipaine tehdaskokeisiin. Testeissä havaittiin odotutetusti viskositeetin eli käytännössä lämpötilan olevan ratkaiseva tekijä ilman poistumisnopeuteen. Tehdasmittakaavan kokeissa mitattiin rakenteeltaan yksinkertaisen ja vähän energiaa kuluttavan ilmanpoistolaitteen toimintaa. Laitteisto sijoitetaan paluuöljyputkistoon ja sen ei tarvitse olla kiertovoitelukeskuksen yhteydessä. Täysimittainen laitteisto rakennettiin kartonkikoneen ja paperikoneen kiertovoitelujärjestelmiin. Laitteen avulla voidaan käsitellä koko voitelujärjestelmän öljy. Tuloksien mukaan laite toimii odotetulla tavalla ja vähentää merkittävästi ilmapitoisuutta. Järjestelmä on heikoimmillaan tilanteessa, jossa lämpötilat on pidettävä alhaisina ja ilmakuplia on runsaasti.