930 resultados para four-point probe method
Resumo:
Os ativos intangíveis receberam atenção especial de estudiosos nos últimos anos, no contexto organizacional de gestão de pessoas, visto que foram desenvolvidas propostas teóricas para compreendê-los e mensurá-los. Ancorados nesta linha de investigação, encontram-se o capital humano e o capital psicológico. Enquanto o capital humano representa o que os trabalhadores sabem fazer, o capital psicológico compreende um estado mental positivo composto por autoeficácia, esperança, otimismo e resiliência. Este estudo teve, como objetivo geral, analisar as relações entre capital humano e capital psicológico. Tratou-se de um estudo quantitativo do qual participaram 60 trabalhadores, estudantes do último período do Curso de Administração, com idade média de 23,85 anos, sendo a maioria do sexo feminino, solteira e empregada. Os dados para o estudo foram coletados em salas de aula de uma universidade particular, situada na Região do Grande ABC, por meio de um instrumento auto aplicável, contendo uma medida intervalar de capital psicológico com 12 itens, validada para o Brasil, e uma de capital humano com seis questões, sendo duas para medir a dimensão experiência e quatro para aferir educação. Foi criado um banco eletrônico, o qual foi submetido a análises descritivas e de correlação (r de Pearson) por meio do SPSS, versão 19.0. Os resultados revelaram que os participantes detinham um capital humano representado por 4,38 anos médios de experiência de trabalho , e que a maioria (75%) havia revelado possuir no máximo cinco anos neste quesito. Quanto à dimensão educação do capital humano, a maioria (96,70%) não havia concluído nenhum curso de graduação, se dedicou entre 11 a 20 anos aos estudos (81,60%), não realizou intercâmbios de estudos (93%), enquanto 86,70% já incluíram, em seu currículo acadêmico, atividades complementares previstas no Plano Pedagógico do Curso de Administração que cursavam, bem como 73,30% realizaram entre um a três estágios curriculares. As análises indicaram um escore mediano de capital psicológico, acentuado pela dificuldade dos participantes para reconhecerem que estavam em uma fase de sucesso no trabalho e de conseguirem enxergar o lado brilhante das coisas relativas ao trabalho. Ao se investigar as relações entre o capital humano e capital psicológico não foram encontradas correlações significativas. Diante de tais resultados, pareceu provável que os participantes do estudo, por serem predominantemente jovens trabalhadores que ainda não concluíram um curso de graduação, embora tivessem em seu percurso de vida mais de 10 anos dedicados aos estudos e trabalhado por volta de cinco anos em média, ainda não reconheciam, em si, a presença de um consistente capital humano nem psicológico. A ausência de relação observada entre os dois ativos intangíveis preconizados por teóricos como importantes, para que o trabalhador pudesse contribuir com a empresa no alcance de suas metas, pareceu revelar que ainda eram necessários mais estudos e desenvolvimento de teorização, para sustentar não somente as hipóteses acerca de ativos intangíveis, como também permitir identificar a relação de dependência que pudesse existir entre as categorias de capital humano e psicológico.
Resumo:
A proposta do presente estudo é verificar a ação pastoral da Igreja Católica junto ao povo de rua da cidade de São Paulo, tendo como objetivo formar um conceito teórico sobre a contribuição social da pastoral em um contexto urbano, a partir da ação de Entid ades de apoio ao povo de rua. A metodologia utilizada foi a bibliográfica. As implicações do estudo foram o direcionamento que a práxis pastoral está direcionada à priorização da superação e do reconhecimento da necessidade material e psicossocial de quem está morando na rua. A concretização da práxis se dá por meio de uma prática interventora sócio-politica, a qual visa a efetivação de medidas públicas para uma demanda de pessoas que usam a rua como moradia. A ação pastoral contribui ao mostrar a ausência de política pública que dificulta o reconhecimento deste grupo social como pessoas capacitadas a produzir e pertencer a sociedade em geral. E, ao mesmo tempo em que aponta a lacuna exposta pelo poder público, o agir pastoral sinaliza alternativa para o reconhecimento de pessoas que moram na rua com parcerias entre entidades não governamentais e movimentos sociais, como o MST, sendo assim uma via de reinserção social, além da promoção de Fóruns para a criação de medidas públicas com participação direta de pessoas que vivem na rua e albergues da cidade de São Paulo. Portanto, verifica-se uma práxis pastoral fundamentada por uma responsabilidade social dinamizada pela prática de parceria participativa que envolva as diversas esferas sociais para efetivação concreta dos direitos sociais da pessoa em situação de rua que vive em áreas urbana como a Cidade de São Paulo.
Resumo:
The last decade has seen a considerable increase in the application of quantitative methods in the study of histological sections of brain tissue and especially in the study of neurodegenerative disease. These disorders are characterised by the deposition and aggregation of abnormal or misfolded proteins in the form of extracellular protein deposits such as senile plaques (SP) and intracellular inclusions such as neurofibrillary tangles (NFT). Quantification of brain lesions and studying the relationships between lesions and normal anatomical features of the brain, including neurons, glial cells, and blood vessels, has become an important method of elucidating disease pathogenesis. This review describes methods for quantifying the abundance of a histological feature such as density, frequency, and 'load' and the sampling methods by which quantitative measures can be obtained including plot/quadrat sampling, transect sampling, and the point-quarter method. In addition, methods for determining the spatial pattern of a histological feature, i.e., whether the feature is distributed at random, regularly, or is aggregated into clusters, are described. These methods include the use of the Poisson and binomial distributions, pattern analysis by regression, Fourier analysis, and methods based on mapped point patterns. Finally, the statistical methods available for studying the degree of spatial correlation between pathological lesions and neurons, glial cells, and blood vessels are described.
Resumo:
We report on high power issues related to the reliability of fibre Bragg gratings inscribed with an infrared femtosecond laser using the point-by-point writing method. Conventionally, fibre Bragg gratings have usually been written in fibres using ultraviolet light, either holographically or using a phase mask. Since the coating is highly absorbing in the UV, this process normally requires that the protective polymer coating is stripped prior to inscription, with the fibre then being recoated. This results in a time consuming fabrication process that, unless great care is taken, can lead to fibre strength degradation, due to the presence of surface damage. The recent development of FBG inscription using NIR femtosecond lasers has eliminated the requirement for the stripping of the coating. At the same time the ability to write gratings point-by-point offers the potential for great flexibility in the grating design. There is, however, a requirement for reliability testing of these gratings, particularly for use in telecommunications systems where high powers are increasingly being used in long-haul transmission systems making use of Raman amplification. We report on a study of such gratings which has revealed the presence of broad spectrum power losses. When high powers are used, even at wavelengths far removed from the Bragg condition, these losses produce an increase in the fibre temperature due to absorption in the coating. We have monitored this temperature rise using the wavelength shift in the grating itself. At power levels of a few watts, various temperature increases were experienced ranging from a few degrees up to the point where the buffer completely melts off the fibre at the grating site. Further investigations are currently under way to study the optical loss mechanisms in order to optimise the inscription mechanism and minimise such losses.
Resumo:
Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.
Resumo:
Recent work has demonstrated the strong qualitative differences between the dynamics near a glass transition driven by short-ranged repulsion and one governed by short-ranged attraction. Here, we study in detail the behavior of non-linear, higher-order correlation functions that measure the growth of length scales associated with dynamical heterogeneity in both types of systems. We find that this measure is qualitatively different in the repulsive and attractive cases with regards to the wave vector dependence as well as the time dependence of the standard non-linear four-point dynamical susceptibility. We discuss the implications of these results for the general understanding of dynamical heterogeneity in glass-forming liquids.
Resumo:
Two mesocosm experiments, PAME-I and PAME-II were conducted in 2007 and 2008 to investigate fate of organic carbon in the arctic microbial food web. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. In PAME-I eight units (each 700 L) formed two four point gradients of additional DOC in form of glucose (0, 0.5, 1 and 3 times Redfield ratio in terms of carbon relative to the nitrogen and phosphorus additions) (Fig. 1). All the eight units also got a daily dose of NH4+ and PO4**3- in Redfield ratio. Two gradients were set up, one with silicate addition, performed in the Arctic location Ny Ålesund, Svalbard, have previously been reported to give different food-web level responses to similar nutrient perturbations. In PAME-II all ten units (each 900 L) formed two four point gradients of additional DOC in form of glucose (0, 0.5, 1, 2 and 3 times Redfield ratio in terms of carbon relative to nitrogen and phosphorus additions). The two gradients in glucose were kept silicate replete. NH4+ was used as the DIN source in one gradient (units 1 to 5) and NO3- in the other (units 6-9). All units got a daily dose of PO4**3- in Redfield ratio. Prokaryotes and viruses were measured by flow cytometry, while ciliate abundances were counted using a Flow Cam. Viral and bacterial diversity was measured by PFGE and DGGE, respectively. In PAME-II the abundance of ciliates was lower than in PAME-I, presumably caused by higher copepod grazing. The abundances of prokaryotes and viruses were also lower in PAME-II compared to PAME-I. Further, less diversity was detected in the viral community (FCM and PFGE) in PAME-II, and no response was observed in the bacterial community structure due to addition of organic carbon.
Resumo:
Sand and sandstone compositions from different types of basins reflect provenance terranes governed by plate tectonics. One hundred and one thin sections of Upper Miocene to Holocene sand-sized material were examined from DSDP/IPOD Sites in the North Pacific Ocean and the Bering Sea. The Gazzi-Dickinson point-counting method was used to establish compositional characteristics of sands from different tectonic settings. Continental margin forearc sands from the western North America continental margin arc system are clearly different from backarc/marginal-sea sands from the Aleutian intraoceanic arc system. The forearc sands have average QFL percentages of 29-42-29, LmLvLst percentages of 32-34-34, 3 Fmwk%M and 0.82 P/F. Aleutian backarc sands have average QFL percentages of 8-22-69. LmLvLst percentages of 9-85-6, 0.5 Fmwk%M and 0.96 P/F. A trend of increasing QFL%Q and decreasing LmLvLst%Lv westward in the backarc region of the Aleutian Ridge reflects the influence of the Asiatic continental margin. Aleutian backarc sands without continental influence have average QFL percentages of 1-20-79, LmLvLst percentages of 1-98-1, 0 Fmwk%M and 0.99 P/F. Of the continental margin forearc samples, sands on the Astoria Fan (west of the Oregon-Washington trench) contain the highest LmLvLst%Lv and lowest P/F; sands from mixed transform-fault and trench settings (Delgada Fan and Gulf of Alaska samples) have slightly higher Qp/Q (0.03); and sands from the Pacific-Juan de Fuca-North America triple junction have the highest Fmwk%M. Delgada Fan and Gulf of Alaska sands have average QFL percentages of 27-38-35, LmLvLst percentages of 37-26-37, 2 Fmwk%M and 0.86 P/F. Astoria Fan sands have average QFL percentages of 35-41-24, LmLvLst percentages of 30-47-23, 3 Fmwk%M and 0.74 P/F. The triple-junction sands have average QFL percentages of 28-59-13, LmLvLst percentages of 25-26-49, 9 Fmwk%M and 0.87 P/F. The petrologic data from the modern ocean basins examined in this study can provide useful analogs for interpretation of ancient oceanic sequences. Our data suggest some refinements of, but generally substantiate, existing petrologic models relating sandstone composition to tectonic setting.
Resumo:
This study investigates the effect of foam core density and skin type on the behaviour of sandwich panels as structural beams tested in four-point bending and axially compressed columns of varying slenderness and skin thickness. Bio-composite unidirectional flax fibre-reinforced polymer (FFRP) is compared to conventional glass-FRP (GFRP) as the skin material used in conjunction with three polyisocyanurate (PIR) foam cores with densities of 32, 64 and 96 kg/m3. Eighteen 1000 mm long flexural specimens were fabricated and tested to failure comparing the effects of foam core density between three-layer FFRP skinned and single-layer GFRP skinned panels. A total of 132 columns with slenderness ratios (kLe/r) ranging from 22 to 62 were fabricated with single-layer GFRP skins, and one-, three-, and five-layer FFRP skins for each of the three foam core densities. The columns were tested to failure in concentric axial compression using pinned-end conditions to compare the effects of each material type and panel height. All specimens had a foam core cross-section of 100x50 mm with 100 mm wide skins of equal thickness. In both flexural and axial loading, panels with skins comprised of three FFRP layers showed equivalent strength to those with a single GFRP layer for all slenderness ratios and core densities examined. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively. Both FFRP and GFRP columns showed a similar variety of failure modes related to slenderness. Low slenderness of 22-25 failed largely due to localized single skin buckling, while those with high slenderness of 51-61 failed primarily by global buckling followed by secondary skin buckling. Columns with intermediate slenderness experienced both localized and global failure modes. High density foam cores more commonly exhibited core shear failure. Doubling the core density of the columns resulted in peak axial load increases, across all slenderness ratios, of 73, 56, 72 and 71% for skins with one, three and five FFRP layers, and one GFRP layer, respectively. Tripling the core density resulted in respective peak load increases of 116, 130, 176 and 170%.
Resumo:
The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.
Resumo:
We present a reformulation of the hairy-probe method for introducing electronic open boundaries that is appropriate for steady-state calculations involving nonorthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms and a perfect nonorthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean interlevel spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current.
Resumo:
The present work is concerned with the use of the cross correlation technique to measure delay time between two simulated signals displaced with respect to time, in order to develop a cross correlator system that will be used to measure the water and oil pipes flowrate in which the detection system is composed by two external low intensity radiation sources located along the tube and two NaI(Tl) gamma-ray detectors. The final purpose of the correlator system is to use the natural disturbances, as the turbulence in the own flow rather than to inject radioactive tracers to the fluid flow as usually is carried out. In the design of this correlator is evaluated the point-by-point calculation method for the cross correlation function in order to produce a system accurate and fast. This method is divided at the same time in three modes of operation: direct, relay and polarity.
Resumo:
Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process. This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.
Resumo:
Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.
Resumo:
Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices. One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction. There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet. These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects. A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential. In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides. These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased. A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies. This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range. Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.