945 resultados para first-passage time
Resumo:
Speech perception runs smoothly and automatically when there is silence in the background, but when the speech signal is degraded by background noise or by reverberation, effortful cognitive processing is needed to compensate for the signal distortion. Previous research has typically investigated the effects of signal-to-noise ratio (SNR) and reverberation time in isolation, whilst few have looked at their interaction. In this study, we probed how reverberation time and SNR influence recall of words presented in participants' first- (L1) and second-language (L2). A total of 72 children (10 years old) participated in this study. The to-be-recalled wordlists were played back with two different reverberation times (0.3 and 1.2 s) crossed with two different SNRs (+3 dBA and +12 dBA). Children recalled fewer words when the spoken words were presented in L2 in comparison with recall of spoken words presented in L1. Words that were presented with a high SNR (+12 dBA) improved recall compared to a low SNR (+3 dBA). Reverberation time interacted with SNR to the effect that at +12 dB the shorter reverberation time improved recall, but at +3 dB it impaired recall. The effects of the physical sound variables (SNR and reverberation time) did not interact with language. © 2016 Hurtig, Keus van de Poll, Pekkola, Hygge, Ljung and Sörqvist.
Resumo:
The objective was to determine whether the presence of fertility-associated antigen (FAA) on sperm collected from Nelore (Bos indicus) bulls can be used to assess potential fertility of sperm for use at first-service fixed-time AI (TAI). Six Nelore bulls were selected based on FAA status (FAA-negative: N = 3; FAA-positive: N = 3) and the ability to produce neat semen with >= 70% morphologically normal sperm and 60% estimated progressive motility before cryopmservation. In Experiment 1, suckled multiparous Nelore cows (N = 835) were evaluated for body condition score (BCS) and received an intravaginal progesterone device (CIDR) and 2.0 mg of estradiol benzoate (Day 0). on Day 9 the CIDR was removed, 12.5 mg of PGF(2 alpha) and 0.5 mg of estradiol cypionate were administered, and calves were removed for 48 h. All cows received TAI on Day II (48 h after CIDR removal). Pregnancy per TAI (P/TAI) was not different between FAA-positive and FAA-negative bulls (41.5% vs. 39.3%, respectively). There was an effect of AI technician on P/TAI (36.0% vs. 43.9%; P < 0.05) and BCS tended to affect P/TAI (P = 0.09), as cows with BCS >= 2.75 were 1.4 times more likely to become pregnant compared with cows with BCS < 2.75. In Experiment 2, nulliparous Nelore heifers (N = 617) were evaluated for BCS and received a CIDR and estradiol benzoate (2.0 mg) on Day 0. on Day 7, all heifers received PGF(2 alpha) (12.5 mg). on Day 9, CIDR inserts were removed and all heifers received estradiol cypionate (0.6 mg) and 200 IU eCG. All heifers received TAI on Day 11 (48 h after CIDR removal). Pregnancy/TAI was different (P = 0.04) between FAA-positive and FAA-negative bulls (33.7% vs. 40.7%, respectively). Presence of FAA on sperm was unsuccessful in assessing the potential fertility of sperm for use in TAI. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We study the problem of gravitational capture in the framework of the Sun-Uranus-particle system. Part of the space of initial conditions is systematically explored, and the duration of temporary gravitational capture is measured. The location and size of different capture-time regions are given in terms of diagrams of initial semimajor axis versus eccentricity. The other initial orbital elements - inclination (i), longitude of the node (Ω), argument of pericenter (ω), and time of pericenter passage (τ) - are first taken to be zero. Then we investigate the cases with ω = 90°, 180°, and 270°. We also present a sample of results for Ω = 90°, considering the cases i = 60°, 120°, 150°, and 180°. Special attention is given to the influence of the initial orbital inclination, taking orbits initially in opposition at pericenter. In this case, the initial inclination is varied from 0° to 180° in steps of 10°. The success of the final stage of the capture problem, which involves the transformation of temporary captures into permanent ones, is highly dependent on the initial conditions associated with the longest capture times. The largest regions of the initial-conditions space with the longest capture times occur at inclinations of 60°-70° and 160°. The regions of possible stability as a function of initial inclination are also delimited. These regions include not only a known set of retrograde orbits, but also a new sort of prograde orbit with inclinations greater than zero.
Resumo:
2001 SN263 is a triple system asteroid. Although it was discovery in 2001, in 2008 astronomical observation carried out by Arecibo observatory revealed that it is actually a system with three bodies orbiting each other. The main central body is an irregular object with a diameter about 2.8 km, while the other two are small objects with less than 1 km across. This system presents an orbital eccentricity of 0.47, with perihelion of 1.04 and aphelion of 1.99, which means that it can be considered as a Near Earth Object. This interesting system was chosen as the target for the Aster mission - first Brazilian space exploration undertaking. A small spacecraft with 150 kg of total mass, 30 kg of payload with 110 W available for the instruments, is scheduled to be launched in 2015, and in 2018 it will approach and will be put in orbit of the triple system. This spacecraft will use electric propulsion and in its payload it will carry image camera, laser rangefinder, infrared spectrometer, mass spectrometer, and experiments to be performed in its way to the asteroid. This mission represents a great challenge for the Brazilian space program. It is being structured to allow the full engagement of the Brazilian universities and technological companies in all the necessary developments to be carried out. In this paper, we present some aspects of this mission, including the transfer trajectories to be used, and details of buss and payload subsystems that are being developed and will be used. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The seroprevalence and geographic distribution of HTLV-1/2 among blood donors are extremely important to transfusion services. We evaluated the seroprevalence of HTLV-1/2 infection among first-time blood donor candidates in Ribeirão Preto city and region. From January 2000 to December 2010, 1,038,489 blood donations were obtained and 301,470 were first-time blood donations. All samples were screened with serological tests for HTLV-1/2 using enzyme immunoassay (EIA). In addition, the frequency of coinfection with hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Chagas disease (CD) and syphilis was also determined. In-house PCR was used as confirmatory test for HTLV-1/2. A total of 296 (0.1%) first-time donors were serologically reactive for HTLV-1/2. Confirmatory PCR of 63 samples showed that 28 were HTLV-1 positive, 13 HTLV-2 positive, 19 negative and three indeterminate. Regarding HTLV coinfection rates, the most prevalent was with HBV (51.3%) and HCV (35.9%), but coinfection with HIV, CD and syphilis was also detected. The real number of HTLV-infected individual and coinfection rate in the population is underestimated and epidemiological studies like ours are very informative.
Resumo:
This thesis focuses on the design and characterization of a novel, artificial minimal model membrane system with chosen physical parameters to mimic a nanoparticle uptake process driven exclusively by adhesion and softness of the bilayer. The realization is based on polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PMDS-b-PMOXA) and nanoscopic colloidal particles (polystyrene, silica), and the utilization of powerful characterization techniques. rnPDMS-b-PMOXA polymersomes with a radius, Rh ~100 nm, a size polydispersity, PD = 1.1 and a membrane thickness, h = 16 nm, were prepared using the film rehydratation method. Due to the suitable mechanical properties (Young’s modulus of ~17 MPa and a bending modulus of ~7⋅10-8 J) along with the long-term stability and the modifiability, these kind of polymersomes can be used as model membranes to study physical and physicochemical aspects of transmembrane transport of nanoparticles. A combination of photon (PCS) and fluorescence (FCS) correlation spectroscopies optimizes species selectivity, necessary for a unique internalization study encompassing two main efforts. rnFor the proof of concepts, the first effort focused on the interaction of nanoparticles (Rh NP SiO2 = 14 nm, Rh NP PS = 16 nm; cNP = 0.1 gL-1) and polymersomes (Rh P = 112 nm; cP = 0.045 gL-1) with fixed size and concentration. Identification of a modified form factor of the polymersome entities, selectively seen in the PCS experiment, enabled a precise monitor and quantitative description of the incorporation process. Combining PCS and FCS led to the estimation of the incorporated particles per polymersome (about 8 in the examined system) and the development of an appropriate methodology for the kinetics and dynamics of the internalization process. rnThe second effort aimed at the establishment of the necessary phenomenology to facilitate comparison with theories. The size and concentration of the nanoparticles were chosen as the most important system variables (Rh NP = 14 - 57 nm; cNP = 0.05 - 0.2 gL-1). It was revealed that the incorporation process could be controlled to a significant extent by changing the nanoparticles size and concentration. Average number of 7 up to 11 NPs with Rh NP = 14 nm and 3 up to 6 NPs with Rh NP = 25 nm can be internalized into the present polymersomes by changing initial nanoparticles concentration in the range 0.1- 0.2 gL-1. Rapid internalization of the particles by polymersomes is observed only above a critical threshold particles concentration, dependent on the nanoparticle size. rnWith regard possible pathways for the particle uptake, cryogenic transmission electron microscopy (cryo-TEM) has revealed two different incorporation mechanisms depending on the size of the involved nanoparticles: cooperative incorporation of nanoparticles groups or single nanoparticles incorporation. Conditions for nanoparticle uptake and controlled filling of polymersomes were presented. rnIn the framework of this thesis, the experimental observation of transmembrane transport of spherical PS and SiO2 NPs into polymersomes via an internalization process was reported and examined quantitatively for the first time. rnIn a summary the work performed in frames of this thesis might have significant impact on cell model systems’ development and thus improved understanding of transmembrane transport processes. The present experimental findings help create the missing phenomenology necessary for a detailed understanding of a phenomenon with great relevance in transmembrane transport. The fact that transmembrane transport of nanoparticles can be performed by artificial model system without any additional stimuli has a fundamental impact on the understanding, not only of the nanoparticle invagination process but also of the interaction of nanoparticles with biological as well as polymeric membranes. rn
Resumo:
Endovascular aneurysm repair (EVAR) is associated with high graft-related complication rates during follow-up. Anatomical fit between patient and endograft could be an important factor for successful treatment. Aim was to assess whether extent of thrombus, calcification, angulation, and tortuosity are associated with occurrence of complications after EVAR.
Resumo:
Granger causality (GC) is a statistical technique used to estimate temporal associations in multivariate time series. Many applications and extensions of GC have been proposed since its formulation by Granger in 1969. Here we control for potentially mediating or confounding associations between time series in the context of event-related electrocorticographic (ECoG) time series. A pruning approach to remove spurious connections and simultaneously reduce the required number of estimations to fit the effective connectivity graph is proposed. Additionally, we consider the potential of adjusted GC applied to independent components as a method to explore temporal relationships between underlying source signals. Both approaches overcome limitations encountered when estimating many parameters in multivariate time-series data, an increasingly common predicament in today's brain mapping studies.
Resumo:
The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. To assess the effectiveness of methods that detect and remove these offsets, we designed and managed the Detection of Offsets in GPS Experiment. We simulated time series that mimicked realistic GPS data consisting of a velocity component, offsets, white and flicker noises (1/f spectrum noises) composed in an additive model. The data set was made available to the GPS analysis community without revealing the offsets, and several groups conducted blind tests with a range of detection approaches. The results show that, at present, manual methods (where offsets are hand picked) almost always give better results than automated or semi‒automated methods (two automated methods give quite similar velocity bias as the best manual solutions). For instance, the fifth percentile range (5% to 95%) in velocity bias for automated approaches is equal to 4.2 mm/year (most commonly ±0.4 mm/yr from the truth), whereas it is equal to 1.8 mm/yr for the manual solutions (most commonly 0.2 mm/yr from the truth). The magnitude of offsets detectable by manual solutions is smaller than for automated solutions, with the smallest detectable offset for the best manual and automatic solutions equal to 5 mm and 8 mm, respectively. Assuming the simulated time series noise levels are representative of real GPS time series, robust geophysical interpretation of individual site velocities lower than 0.2–0.4 mm/yr is therefore certainly not robust, although a limit of nearer 1 mm/yr would be a more conservative choice. Further work to improve offset detection in GPS coordinates time series is required before we can routinely interpret sub‒mm/yr velocities for single GPS stations.