682 resultados para fiber grating sensor
Resumo:
对存在偏振模色散(PMD)和群时延(GD)抖动的非理想线性啁啾光纤光栅的色散补偿特性进行了研究。实验测量了啁啾光纤光栅的群时延谱和偏振模色散光谱,理论分析和实验测量表明,啁啾光纤光栅差分群时延(DGD)抖动与其时延抖动密切相关。通过数值模拟方法,计算了线性啁啾光纤光栅偏振模色散眼图代价与入射到啁啾光纤光栅色散补偿器的光信号的偏振方向的关系,计算结果表明在使用啁啾光纤光栅色散补偿器时应对光信号的偏振方向进行调整,以获得最佳补偿效果。另外结合实验数据,模拟计算并讨论了非理想线性啁啾光纤光栅群时延抖动和偏振模色
Resumo:
我们提出了一种新颖的利用脉冲重复率倍增和时域泰伯效应实现毫米波脉冲信号产生的光学方法。在我们的方案中,一个级联的马赫振德干涉仪被用来实现脉冲重复率倍增,一个线性的啁啾光纤光栅被用来实现时域泰伯效应。文中对这种方法的基本理论进行了分析,并给出了相应的数值模拟的结果。研究结果显示这种灵活的毫米波脉冲信号产生的方案在未来的宽带的Radio over Fiber技术将有一个很好的潜在的应用。
Resumo:
采用遮挡法引入相移制作了掺Yb相移光纤光栅(PS-FBG)。在制作光栅的过程中,将其作为激光器的谐振腔,通过监测激光器的输出功率来确定相移大小。当激光器的输出功率开始下降时,停止曝光,此时引入的相移为π/2。为了使光栅的特性尽快稳定下来需要对光栅进行退火,这将导致引入的相移小于π/2。为了弥补退火过程中引起的相移降低,需要对退火后的光栅进行二次曝光,以使光栅的相移恢复π/2。利用该方法制作了一只光纤光栅激光器。当抽运功率为100 mW时,获得了25 mW的输出功率,信噪比(SNR)为60 dB。在1 h内
Resumo:
提出并实验证实了一种刻写光栅时既能保护相位版又能对光栅的反射波长进行微调的方法.通过调整光纤和相位版之间的距离,利用1550nm单模光纤和掺铒分别实现了0.48nm和2.2nm的光栅反射波长的调节.在相位版和光纤之间的距离保持在3mm的条件下,既可以保护相位版又可以获得高质量的光栅.
Resumo:
报道了一种基于光时域反射计的全分布式光纤漏油传感器,该传感器能实现分布式实时监测长输油管道,及时发现小型的漏油事件.传感器沿管道铺设,利用光时域反射计实时测量光纤在长度上的损耗变化特点,及时发现并定位管道上的每一处泄漏事件.模拟实验证明了其实际操作的可行性,长期使用的稳定性和各种抗干扰性,能在15min内发现并定位漏油事件,且定位准确度为3m.
Resumo:
pH指示剂在高分子载体上的固定化研究是应光导纤维pH传感器的发展要求而发展起来的新的研究领域。pH指示剂在高分子固态载体上的固定直接决定着光导纤维pH传感器的灵敏度、响应时间、寿命等性能。迄今,吸附、包埋和化学键合三利,固定方法已得到广泛应用。吸附法与包埋法简单易行,但因指示剂易于逸出而无法保证试剂相的使用稳定性及寿命;化学键合法目前仅限于对含氨基等高反应活性基团的指示剂固定。另外,这三种固定技术均存在试剂相与分析对象呈现固/液两相分离的问题,它严重制约了传感器响应性能,成为pH指示剂固定技术发展的“瓶颈”。改善、发展与寻找新的指示剂/载体固定配对体系已成为本领域的研究焦点。本论文针对上述问题,开拓与发展了一系列指示剂固定于固态高分子载体上的新体系。(一)首先开拓与发展了酚红/交联聚乙烯醇与邻甲酚红/交联聚乙烯醇固定对的新体系。在酸性条件下,以甲醛做交联剂,通过在玻璃板上倾涂聚乙烯醇甲醛的凝胶溶液制备了高亲水性的交联聚乙烯醇载体膜;然后采用接枝共聚反应将丙烯酞胺单体与通过酸碱反应接枝有酚红或邻甲酚红的丙烯酞胺混合物接枝固定到交联聚乙烯醇薄膜上,首次将不含氨基的酚红、邻甲酚红在高亲水性的聚乙烯醇载体上固定。利用紫外可见光光谱仪测试了其响应性能。结果表明,固定化指示剂的光谱行为与其相应的水溶液的光谱行为不一致,这可能是固定化过程中新的化学键生成以及载体与指示剂之间的相互作用如氢键的作用等引起的。这也导致了其pH响应范围与相应指示剂水溶液的响应范围的差异。固定酚红交联聚乙烯醇pH敏感膜的pH响应范围为pH=6.72~8.49;固定邻甲酚红交联聚乙烯醇pH敏感膜的两个响应范围分别为[H~+]=0.1mol/L~5mol/L和pH7.97~12.26。这种方式制备的这两种pH敏感薄膜均表现出优异的可重复使用性、可逆性、稳定性及易于制备的特点。更突出的优点在于,与以聚丙烯酰胺为基质直接固定酚红的薄膜(PAM-PR)相比,这种固定技术制备的敏感膜,当其与分析剂溶液接触时,其接枝于表面的水溶性高分子溶解,呈现“液态”,在固态基质表面形成一“液膜”层,从而消除了试剂相与分析剂之间的相界面,克服了指示剂固定化技术中的“瓶颈”问题,大幅度地提高了其响应速度与灵敏度,使响应时间从PAM-PR的数十分钟降至30秒以下。(二)开拓了刚果红醋酸纤维素包埋对的pH敏感膜(CCM)及刚果红/环氧氯丙烷交联聚乙烯醇(PECM)和甲醛交联聚乙烯醇(PFCM)的三种pH敏感膜新体系,测试并比较了三种膜的响应性能。结果表明,固定化刚果红的光谱性质和响应范围与刚果红水溶液不一致,而且用不同载体固定的刚果红的光谱特征与响应范围也各不相同。CCM的响应范围为pH=2.5~4.5,PECM的响应范围在[H~+]=2mol/L~pH=6.8之间,PFCM响应范围为pH=2.90~5.48。这也可能是固定化过程中的氢键效应、空间位阻、指示剂与载体间发生的化学反应不同及载体本身结构的差异等引起的。这三种膜也具有良好的重现性、可逆性及响应迅速(平均响应时间低于25秒)的特点。另外发现醋酸纤维素包埋刚果红的敏感膜具有特殊的稳定性。对这种特殊的稳定性原因的分析表明选择合适尺寸分子的指示剂与载体配对将可能克服包埋技术中指示剂逸出的缺点。(三)对制备的pH敏感膜及对应的水溶液的pH线性响应范围给出了相应的线性回归方程(R>98.2)。结果表明这些敏感膜对响应范围内的pH均具有良好的线性响应关系。这些结果与思想不仅丰富了光导pH传感器的试剂相内容,也为后续工作提供了一些有益的借鉴。
Resumo:
A novel ameliorated phase generated carrier (PGC) demodulation algorithm based on arctangent function and differential-self-multiplying (DSM) is proposed in this paper. The harmonic distortion due to nonlinearity and the stability with light intensity disturbance (LID) are investigated both theoretically and experimentally. The nonlinearity of the PGC demodulation algorithm has been analyzed and an analytical expression of the total-harmonic-distortion (THD) has been derived. Experimental results have confirmed the low harmonic distortion of the ameliorated PGC algorithm as expected by the theoretical analysis. Compared with the traditional PGC-arctan and PGC-DCM algorithm, the ameliorated PGC algorithm has a much lower THD as well as a better signal-to-noise-and-distortion (SINAD). A THD of below 0.1% and a SINAD of 60 dB have been achieved with PGC modulation depth (value) ranges from 1.5 to 3.5 rad. The stability performance with LID has also been studied. The ameliorated PGC algorithm has a much higher stability than the PGC-DCM algorithm. It can keep stable operations with LID depth as large as 26.5 dB and LID frequency as high as 1 kHz. The system employing the ameliorated PGC demodulation algorithm has a minimum detectable phase shift of 5 mu rad/root Hz @ 1 kHz, a large dynamic range of 120 dB @ 100 Hz, and a high linearity of better than 99.99%.
Resumo:
A distributed temperature sensor based on Rayleigh scattering Brillouin optical time domain analysis (Rayleigh-BOTDA) is proposed in this paper. The sensor uses Rayleigh backscattering effect of microwave modulated pulse base sidebands as probe wave and a high sensitive photon counting detector for Brillouin signal intensity detection. Compared with a conventional BOTDA system, the Rayleigh-BOTDA effectively suppresses polarization-induced signal fluctuation resulting in improved signal intensity. The experimental scheme presented is simplified by using a single laser with one-end access. The temperature accuracy of the new sensing system was demonstrated as 1 degrees C on spatial resolution of 3 m.
Resumo:
This article presents the results from an experimental program designed to evaluate the performance of a system consisting of a readout unit and a ribbon type Fiber Optic Sensor (FOS) based on Brillouin Optical Time Domain Analysis (BOTDA). The system is intended for the detection of cracks as well as the monitoring of long-term performance for steel bridge girders. The program consisted of introducing a crack at the center of a 3-m-long steel beam and monitoring its progression using static loading tests performed at ambient and sub-zero temperatures. For sensor lengths similar to those used in the field, the resonant frequency shifts per unit increase in crack width were found to decrease from 114 MHz/mm at ambient temperature (~25C) to 65 MHz/mm at -10C. Results also revealed nonlinearity and variability, which can be attributed to an incompatibility between the settings of the laser pump in the readout unit and the sensor length. Significant losses were detected along the bonded segments of the sensor and were attributed to the presence of ripples along the sensor. These undulations worsen with a reduction in temperature and are induced by the bonding procedure as well as the slack provided in the plastic sleeves containing the splices.
Resumo:
O objetivo deste trabalho consistiu em projetar, construir e testar um protótipo em laboratório de uma fonte de alimentação de alta tensão que permita descargas elétricas {estáveis e de dimensões reduzidas}, de modo a que possa ser utilizada, dada a sua essencialidade, na fabricação de redes de período longo (LPG) em fibra ótica nos chamados turning points. Estes são pontos de elevada sensibilidade, fundamentais no desenvolvimento tecnológico de sensores em fibra ótica, em particular, de sensores refractométricos. O protótipo da fonte de alimentação é composto por um regulador do tipo BUCK, um inversor para alimentação do transformador de alta tensão, o circuito de realimentação e controlo PWM e um microcontrolador para o comando da fonte. Posteriormente procedeu-se à otimização dos parâmetros de descarga, o que conduziu a fabricação de redes de período longo com períodos inferiores a 150 micrómetros. Este é um resultado sem paralelo a nível internacional no que concerne ao uso da técnica do arco elétrico.
Resumo:
Microbent optical fibers are potential candidates for evanescent wave sensing. We investigate the behavior of a permanently microbent fiber optic sensor when it is immersed in an absorbing medium. Two distinct detection schemes, namely, bright-field and dark-field detection configuration, are employed for the measurements. The optical power propagating through the sensor is found to vary in a logarithmic fashion with the concentration of the absorbing species in the surrounding medium. We observe that the sensitivity of the setup is dependent on the bending amplitude and length of the microbend region for the bright-field detection scheme, while it is relatively independent of both for the dark-field detection configuration. This feature can be exploited in compact sensor designs where reduction of the sensing region length is possible without sacrificing sensitivity.
Resumo:
This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems
Resumo:
We demonstrate an idealized method for the fabrication of regenerated type IA fibre Bragg gratings using commonly available apparatus. We use this technique to show that gratings written in the same fibre with the same period may have central wavelengths which are 14.4 nm apart and have an + 11.5% and - 1.2% difference in temperature and strain coefficients, respectively. We use these results to show that temperature compensated dual grating sensor heads, of an arbitrary length, may be quickly and consistently manufactured. © 2004 IOP Publishing Ltd.
Resumo:
Optical differentiators constitute a basic device for analog all-optical signal processing [1]. Fiber grating approaches, both fiber Bragg grating (FBG) and long period grating (LPG), constitute an attractive solution because of their low cost, low insertion losses, and full compatibility with fiber optic systems. A first order differentiator LPG approach was proposed and demonstrated in [2], but FBGs may be preferred in applications with a bandwidth up to few nm because of the extreme sensitivity of LPGs to environmental fluctuations [3]. Several FBG approaches have been proposed in [3-6], requiring one or more additional optical elements to create a first-order differentiator. A very simple, single optical element FBG approach was proposed in [7] for first order differentiation, applying the well-known logarithmic Hilbert transform relation of the amplitude and phase of an FBG in transmission [8]. Using this relationship in the design process, it was theoretically and numerically demonstrated that a single FBG in transmission can be designed to simultaneously approach the amplitude and phase of a first-order differentiator spectral response, without need of any additional elements. © 2013 IEEE.
Resumo:
We describe the use of high birefringence fibre forming a differential path interferometer for heterodyne fibre optic sensing applications. We firstly recover a low frequency strain amplitude of 1µe at 1Hz applied to a fibre Bragg grating sensor demonstrating a noise limited resolution of around 100ne/vHz. Secondly we interrogate a Mach-Zehnder interferometer sensor using the dual wavelength technique to detect a change in the Mach-Zehnder OPD of 200µm.