964 resultados para epidermal synthesis-phase cells
Resumo:
A set of bimetallic Pt-Ru catalysts prepared by co-impregnation of carbon black with ruthenium(III) chloride hydrate and hydrogen hexachloroplatinate(IV) hydrate were investigated by temperature-programmed reduction (TPR), chemisorption of hydrogen, transmission electron microscopy (TEM), microcalorimetry of adsorbed CO and a structure-sensitive reaction (n-hexane conversion). The results showed that the volumetric capacities for CO and H-2 adsorption is influenced in the bimetallic Pt-Ru catalysts by the formation of a Pt-Ru alloy. The n-hexane reaction revealed that the reaction mechanism for the pure Pt catalyst mainly occurs via cyclic isomerization and aromatization due to the presence of bigger Pt surface ensembles, whereas the Pt-Ru catalysts exhibited predominantly bond-shift isomerization by the diluting effect of Ru metal addition. The differential heats of CO chemisorption on Pt-Ru catalysts fell between the two monometallic Pt and Ru catalysts extremes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The catalytic performances of ZrO2-based catalysts were evaluated for the synthesis of higher alcohols from synthesis gas. The crystal phase structures were characterized by X-ray diffraction (XRD) and UV Raman. The results indicated that ZrO2 and Pd modified ZrO2 catalysts were effective catalysts in the synthesis of ethanol or isobutanol, and their selectivities basically depended on the crystal phase of ZrO2 surface. The ZrO2 with surface tetragonal crystal phase exhibited a high activity to form ethanol, while the ZrO2 with surface monoclinic crystal phase exhibited a high activity to form isobutanol. Temperature-programmed desorption (TPD) experiment indicated that the high activity of isobutanol formation from synthesis gas over monoclinic zirconia was due probably to the strong Lewis acidity of Zr4+ cations and the strong Lewis basicity of O2- anions of coordinative unsaturated Zr4+-O2- pairs on the surface of monoclinic ZrO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Human serum albumin (HSA) was successfully bonded to silica with s-triazine as activator. The coupling reaction by this method was rapid and effective. The triazine-activated silica is relatively stable and can be installed for at least 1 month without obvious loss of reactivity when stored below 30 degreesC, pH below 7. It was observed that the amount of bound HSA reached 120 mg/g silica calculated from the UV absorbance difference of the HSA solution. d,l-tryptophan was selected as the probe solute to characterize the properties of HSA bonded s-triazine chiral stationary phase, and separation factor of 9.4 was obtained for d,l-tryptophan. Furthermore, the amount of effective HSA on silica was measured by high-performance frontal analysis, and only 16.8 mg/g silica was responsible for the resolution of d,l-tryptophan. These results indicate that the amount of both the bound and effective HSA on silica with triazine as activator was much higher than those by the Schiff base coupling method. Different kinds of enantiomers were resolved successfully on the aminopropylsilica-bonded HSA s-triazine chiral stationary phase. (C) 2000 Wiley-Liss, Inc.
Resumo:
Rhombohedral-calcite and hexagonal-vaterite types of LuBO:Eu3+ microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples.
Resumo:
Amphiphilic biodegradable star-shaped polymer was conveniently prepared by the Sn(Oct)(2)-catalyzed ring opening polymerization of c-caprolactone (CL) with hyperbranched poly(ester amide) (PEA) as a macroinitiator. Various monomer/initiator ratios were employed to vary the length of the PCL arms. H-1 NMR and FTIR characterizations showed the successful synthesis of star polymer with high initiation efficiency. SEC analysis using triple detectors, RI, light scattering, and viscosity confirmed the controlled manner of polymerization and the star architecture.
Resumo:
During the reaction of reduced C-60 with benzyl bromide in benzonitrile, a novel cis-1 C-60 adduct, 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (1), Was obtained rather than the expected product of 1,4-dibenzyl C-60. The structure of compound 1 was analyzed by X-ray single-crystal diffraction, identifying the presence of a five-membered heterocycle at a [5,6] bond of C-60. One of the heteroatoms is assigned as a nitrogen atom; however, the identity of the other heteroatom cannot be determined unambiguously by crystallography due to similarity between the nitrogen and oxygen atoms.
Resumo:
5,10,15,20-Tetra-[(p-alkoxy-m-ethyloxy)phenyl]porphyrin and [5-(p-alkoxy)phenyl-10,15,20-tri-phenyl]porphyrin and their holmium(III) complexes are reported. They display a hexagonal columnar discotic columnar Col(h)) liquid crystal phase and were studied by cyclic voltammetry, surface photovoltage spectroscopy (SPS), electric-field-induced surface photovoltage spectroscopy (EFISPS) and luminescence spectroscopy. Within the accessible potential window, all these compounds exhibit two one-electron reversible redox reactions. Quantum yields of Q band are in the region 0.0045-0.21 at room temperature. The SPS and EFISPS reveal that all the compounds are p-type semiconductors and exhibit photovoltaic response due to pi-pi* electron transitions.