976 resultados para empirical methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares the performance of four commonly used approaches to measure consumers’ willingness to pay with real purchase data (REAL): the open-ended (OE) question format; choicebased conjoint (CBC) analysis; Becker, DeGroot, and Marschak’s (BDM) incentive-compatible mechanism; and incentive-aligned choice-based conjoint (ICBC) analysis. With this five-in-one approach, the authors test the relative strengths of the four measurement methods, using REAL as the benchmark, on the basis of statistical criteria and decision-relevant metrics. The results indicate that the BDM and ICBC approaches can pass statistical and decision-oriented tests. The authors find that respondents are more price sensitive in incentive-aligned settings than in non-incentive-aligned settings and the REAL setting. Furthermore, they find a large number of “none” choices under ICBC than under hypothetical conjoint analysis. This study uncovers an intriguing possibility: Even when the OE format and CBC analysis generate hypothetical bias, they may still lead to the right demand curves and right pricing decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Governance of food systems is a poorly understood determinant of food security. Much scholarship on food systems governance is non-empirical, while existing research is often case study-based and theoretically and methodologically incommensurable. This frustrates aggregation of evidence and generalisation. We undertook a systematic review of methods used in food systems governance research with a view to identifying a core set of indicators for future research. We gathered literature through a structured consultation and sampling from recent reviews. Indicators were identified and classified according to the levels and sectors they investigate. We found a concentration of indicators in food production at local to national levels and a sparseness in distribution and consumption. Unsurprisingly, many indicators of institutional structure were found, while agency-related indicators are moderately represented. We call for piloting and validation of these indicators and for methodological development to fill gaps identified. These efforts are expected to support a more consolidated future evidence base and eventual meta-analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research project is an extension of a series of administrative science and health care research projects evaluating the influence of external context, organizational strategy, and organizational structure upon organizational success or performance. The research will rely on the assumption that there is not one single best approach to the management of organizations (the contingency theory). As organizational effectiveness is dependent on an appropriate mix of factors, organizations may be equally effective based on differing combinations of factors. The external context of the organization is expected to influence internal organizational strategy and structure and in turn the internal measures affect performance (discriminant theory). The research considers the relationship of external context and organization performance.^ The unit of study for the research will be the health maintenance organization (HMO); an organization the accepts in exchange for a fixed, advance capitation payment, contractual responsibility to assure the delivery of a stated range of health sevices to a voluntary enrolled population. With the current Federal resurgence of interest in the Health Maintenance Organization (HMO) as a major component in the health care system, attention must be directed at maximizing development of HMOs from the limited resources available. Increased skills are needed in both Federal and private evaluation of HMO feasibility in order to prevent resource investment and in projects that will fail while concurrently identifying potentially successful projects that will not be considered using current standards.^ The research considers 192 factors measuring contextual milieu (social, educational, economic, legal, demographic, health and technological factors). Through intercorrelation and principle components data reduction techniques this was reduced to 12 variables. Two measures of HMO performance were identified, they are (1) HMO status (operational or defunct), and (2) a principle components factor score considering eight measures of performance. The relationship between HMO context and performance was analysed using correlation and stepwise multiple regression methods. In each case it has been concluded that the external contextual variables are not predictive of success or failure of study Health Maintenance Organizations. This suggests that performance of an HMO may rely on internal organizational factors. These findings have policy implications as contextual measures are used as a major determinant in HMO feasibility analysis, and as a factor in the allocation of limited Federal funds. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have shown that rare genetic variants have stronger effects in predisposing common diseases, and several statistical methods have been developed for association studies involving rare variants. In order to better understand how these statistical methods perform, we seek to compare two recently developed rare variant statistical methods (VT and C-alpha) on 10,000 simulated re-sequencing data sets with disease status and the corresponding 10,000 simulated null data sets. The SLC1A1 gene has been suggested to be associated with diastolic blood pressure (DBP) in previous studies. In the current study, we applied VT and C-alpha methods to the empirical re-sequencing data for the SLC1A1 gene from 300 whites and 200 blacks. We found that VT method obtains higher power and performs better than C-alpha method with the simulated data we used. The type I errors were well-controlled for both methods. In addition, both VT and C-alpha methods suggested no statistical evidence for the association between the SLC1A1 gene and DBP. Overall, our findings provided an important comparison of the two statistical methods for future reference and provided preliminary and pioneer findings on the association between the SLC1A1 gene and blood pressure.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Negli ultimi anni i modelli VAR sono diventati il principale strumento econometrico per verificare se può esistere una relazione tra le variabili e per valutare gli effetti delle politiche economiche. Questa tesi studia tre diversi approcci di identificazione a partire dai modelli VAR in forma ridotta (tra cui periodo di campionamento, set di variabili endogene, termini deterministici). Usiamo nel caso di modelli VAR il test di Causalità di Granger per verificare la capacità di una variabile di prevedere un altra, nel caso di cointegrazione usiamo modelli VECM per stimare congiuntamente i coefficienti di lungo periodo ed i coefficienti di breve periodo e nel caso di piccoli set di dati e problemi di overfitting usiamo modelli VAR bayesiani con funzioni di risposta di impulso e decomposizione della varianza, per analizzare l'effetto degli shock sulle variabili macroeconomiche. A tale scopo, gli studi empirici sono effettuati utilizzando serie storiche di dati specifici e formulando diverse ipotesi. Sono stati utilizzati tre modelli VAR: in primis per studiare le decisioni di politica monetaria e discriminare tra le varie teorie post-keynesiane sulla politica monetaria ed in particolare sulla cosiddetta "regola di solvibilità" (Brancaccio e Fontana 2013, 2015) e regola del GDP nominale in Area Euro (paper 1); secondo per estendere l'evidenza dell'ipotesi di endogeneità della moneta valutando gli effetti della cartolarizzazione delle banche sul meccanismo di trasmissione della politica monetaria negli Stati Uniti (paper 2); terzo per valutare gli effetti dell'invecchiamento sulla spesa sanitaria in Italia in termini di implicazioni di politiche economiche (paper 3). La tesi è introdotta dal capitolo 1 in cui si delinea il contesto, la motivazione e lo scopo di questa ricerca, mentre la struttura e la sintesi, così come i principali risultati, sono descritti nei rimanenti capitoli. Nel capitolo 2 sono esaminati, utilizzando un modello VAR in differenze prime con dati trimestrali della zona Euro, se le decisioni in materia di politica monetaria possono essere interpretate in termini di una "regola di politica monetaria", con specifico riferimento alla cosiddetta "nominal GDP targeting rule" (McCallum 1988 Hall e Mankiw 1994; Woodford 2012). I risultati evidenziano una relazione causale che va dallo scostamento tra i tassi di crescita del PIL nominale e PIL obiettivo alle variazioni dei tassi di interesse di mercato a tre mesi. La stessa analisi non sembra confermare l'esistenza di una relazione causale significativa inversa dalla variazione del tasso di interesse di mercato allo scostamento tra i tassi di crescita del PIL nominale e PIL obiettivo. Risultati simili sono stati ottenuti sostituendo il tasso di interesse di mercato con il tasso di interesse di rifinanziamento della BCE. Questa conferma di una sola delle due direzioni di causalità non supporta un'interpretazione della politica monetaria basata sulla nominal GDP targeting rule e dà adito a dubbi in termini più generali per l'applicabilità della regola di Taylor e tutte le regole convenzionali della politica monetaria per il caso in questione. I risultati appaiono invece essere più in linea con altri approcci possibili, come quelli basati su alcune analisi post-keynesiane e marxiste della teoria monetaria e più in particolare la cosiddetta "regola di solvibilità" (Brancaccio e Fontana 2013, 2015). Queste linee di ricerca contestano la tesi semplicistica che l'ambito della politica monetaria consiste nella stabilizzazione dell'inflazione, del PIL reale o del reddito nominale intorno ad un livello "naturale equilibrio". Piuttosto, essi suggeriscono che le banche centrali in realtà seguono uno scopo più complesso, che è il regolamento del sistema finanziario, con particolare riferimento ai rapporti tra creditori e debitori e la relativa solvibilità delle unità economiche. Il capitolo 3 analizza l’offerta di prestiti considerando l’endogeneità della moneta derivante dall'attività di cartolarizzazione delle banche nel corso del periodo 1999-2012. Anche se gran parte della letteratura indaga sulla endogenità dell'offerta di moneta, questo approccio è stato adottato raramente per indagare la endogeneità della moneta nel breve e lungo termine con uno studio degli Stati Uniti durante le due crisi principali: scoppio della bolla dot-com (1998-1999) e la crisi dei mutui sub-prime (2008-2009). In particolare, si considerano gli effetti dell'innovazione finanziaria sul canale dei prestiti utilizzando la serie dei prestiti aggiustata per la cartolarizzazione al fine di verificare se il sistema bancario americano è stimolato a ricercare fonti più economiche di finanziamento come la cartolarizzazione, in caso di politica monetaria restrittiva (Altunbas et al., 2009). L'analisi si basa sull'aggregato monetario M1 ed M2. Utilizzando modelli VECM, esaminiamo una relazione di lungo periodo tra le variabili in livello e valutiamo gli effetti dell’offerta di moneta analizzando quanto la politica monetaria influisce sulle deviazioni di breve periodo dalla relazione di lungo periodo. I risultati mostrano che la cartolarizzazione influenza l'impatto dei prestiti su M1 ed M2. Ciò implica che l'offerta di moneta è endogena confermando l'approccio strutturalista ed evidenziando che gli agenti economici sono motivati ad aumentare la cartolarizzazione per una preventiva copertura contro shock di politica monetaria. Il capitolo 4 indaga il rapporto tra spesa pro capite sanitaria, PIL pro capite, indice di vecchiaia ed aspettativa di vita in Italia nel periodo 1990-2013, utilizzando i modelli VAR bayesiani e dati annuali estratti dalla banca dati OCSE ed Eurostat. Le funzioni di risposta d'impulso e la scomposizione della varianza evidenziano una relazione positiva: dal PIL pro capite alla spesa pro capite sanitaria, dalla speranza di vita alla spesa sanitaria, e dall'indice di invecchiamento alla spesa pro capite sanitaria. L'impatto dell'invecchiamento sulla spesa sanitaria è più significativo rispetto alle altre variabili. Nel complesso, i nostri risultati suggeriscono che le disabilità strettamente connesse all'invecchiamento possono essere il driver principale della spesa sanitaria nel breve-medio periodo. Una buona gestione della sanità contribuisce a migliorare il benessere del paziente, senza aumentare la spesa sanitaria totale. Tuttavia, le politiche che migliorano lo stato di salute delle persone anziane potrebbe essere necessarie per una più bassa domanda pro capite dei servizi sanitari e sociali.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality software, delivered on time and budget, constitutes a critical part of most products and services in modern society. Our government has invested billions of dollars to develop software assets, often to redevelop the same capability many times. Recognizing the waste involved in redeveloping these assets, in 1992 the Department of Defense issued the Software Reuse Initiative. The vision of the Software Reuse Initiative was "To drive the DoD software community from its current "re-invent the software" cycle to a process-driven, domain-specific, architecture-centric, library-based way of constructing software.'' Twenty years after issuing this initiative, there is evidence of this vision beginning to be realized in nonembedded systems. However, virtually every large embedded system undertaken has incurred large cost and schedule overruns. Investigations into the root cause of these overruns implicates reuse. Why are we seeing improvements in the outcomes of these large scale nonembedded systems and worse outcomes in embedded systems? This question is the foundation for this research. The experiences of the Aerospace industry have led to a number of questions about reuse and how the industry is employing reuse in embedded systems. For example, does reuse in embedded systems yield the same outcomes as in nonembedded systems? Are the outcomes positive? If the outcomes are different, it may indicate that embedded systems should not use data from nonembedded systems for estimation. Are embedded systems using the same development approaches as nonembedded systems? Does the development approach make a difference? If embedded systems develop software differently from nonembedded systems, it may mean that the same processes do not apply to both types of systems. What about the reuse of different artifacts? Perhaps there are certain artifacts that, when reused, contribute more or are more difficult to use in embedded systems. Finally, what are the success factors and obstacles to reuse? Are they the same in embedded systems as in nonembedded systems? The research in this dissertation is comprised of a series of empirical studies using professionals in the aerospace and defense industry as its subjects. The main focus has been to investigate the reuse practices of embedded systems professionals and nonembedded systems professionals and compare the methods and artifacts used against the outcomes. The research has followed a combined qualitative and quantitative design approach. The qualitative data were collected by surveying software and systems engineers, interviewing senior developers, and reading numerous documents and other studies. Quantitative data were derived from converting survey and interview respondents' answers into coding that could be counted and measured. From the search of existing empirical literature, we learned that reuse in embedded systems are in fact significantly different from nonembedded systems, particularly in effort in model based development approach and quality where the development approach was not specified. The questionnaire showed differences in the development approach used in embedded projects from nonembedded projects, in particular, embedded systems were significantly more likely to use a heritage/legacy development approach. There was also a difference in the artifacts used, with embedded systems more likely to reuse hardware, test products, and test clusters. Nearly all the projects reported using code, but the questionnaire showed that the reuse of code brought mixed results. One of the differences expressed by the respondents to the questionnaire was the difficulty in reuse of code for embedded systems when the platform changed. The semistructured interviews were performed to tell us why the phenomena in the review of literature and the questionnaire were observed. We asked respected industry professionals, such as senior fellows, fellows and distinguished members of technical staff, about their experiences with reuse. We learned that many embedded systems used heritage/legacy development approaches because their systems had been around for many years, before models and modeling tools became available. We learned that reuse of code is beneficial primarily when the code does not require modification, but, especially in embedded systems, once it has to be changed, reuse of code yields few benefits. Finally, while platform independence is a goal for many in nonembedded systems, it is certainly not a goal for the embedded systems professionals and in many cases it is a detriment. However, both embedded and nonembedded systems professionals endorsed the idea of platform standardization. Finally, we conclude that while reuse in embedded systems and nonembedded systems is different today, they are converging. As heritage embedded systems are phased out, models become more robust and platforms are standardized, reuse in embedded systems will become more like nonembedded systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model-driven Engineering (MDE) approaches are often acknowledged to improve the maintainability of the resulting applications. However, there is a scarcity of empirical evidence that backs their claimed benefits and limitations with respect to code-centric approaches. The purpose of this paper is to compare the performance and satisfaction of junior software maintainers while executing maintainability tasks on Web applications with two different development approaches, one being OOH4RIA, a model-driven approach, and the other being a code-centric approach based on Visual Studio .NET and the Agile Unified Process. We have conducted a quasi-experiment with 27 graduated students from the University of Alicante. They were randomly divided into two groups, and each group was assigned to a different Web application on which they performed a set of maintainability tasks. The results show that maintaining Web applications with OOH4RIA clearly improves the performance of subjects. It also tips the satisfaction balance in favor of OOH4RIA, although not significantly. Model-driven development methods seem to improve both the developers’ objective performance and subjective opinions on ease of use of the method. This notwithstanding, further experimentation is needed to be able to generalize the results to different populations, methods, languages and tools, different domains and different application sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student’s t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22–0.26 km s-1, dependent on instrumental configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microfoundations research agenda presents an expanded theoretical perspective because it considers individuals, their characteristics, and their interactions as relevant variables to help us understand firm-level strategic issues. However, microfoundations empirical research faces unique challenges because processes take place at different levels of analysis and these multilevel processes must be considered simultaneously. We describe multilevel modeling and mixed methods as methodological approaches whose use will allow for theoretical advancements. We describe key issues regarding the use of these two types of methods and, more importantly, discuss pressing substantive questions and topics that can be addressed with each of these methodological approaches with the goal of making theoretical advancements regarding the microfoundations research agenda and strategic management studies in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bibliographical references in "Statistical sources and methods of computation" (p.[141]-162.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A review is given on the fundamental studies of gas-carbon reactions using electronic structure methods in the last several decades. The three types of electronic structure methods including semi-empirical, ab initio and density functional theory, methods are briefly introduced first, followed by the studies on carbon reactions with hydrogen and oxygen-containing gases (non-catalysed and catalysed). The problems yet to solve and possible promising directions are discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study has three main objectives. First, it develops a generalization of the commonly used EKS method to multilateral price comparisons. It is shown that the EKS system can be generalized so that weights can be attached to each of the link comparisons used in the EKS computations. These weights can account for differing levels of reliability of the underlying binary comparisons. Second, various reliability measures and corresponding weighting schemes are presented and their merits discussed. Finally, these new methods are applied to an international data set of manufacturing prices from the ICOP project. Although theoretically superior, it appears that the empirical impact of the weighted EKS method is generally small compared to the unweighted EKS. It is also found that this impact is larger when it is applied at lower levels of aggregation. Finally, the importance of using sector specific PPPs in assessing relative levels of manufacturing productivity is indicated.