909 resultados para element load method
Resumo:
An implementation of the inverse vector Jiles-Atherton model for the solution of non-linear hysteretic finite element problems is presented. The implementation applies the fixed point method with differential reluctivity values obtained from the Jiles-Atherton model. Differential reluctivities are usually computed using numerical differentiation, which is ill-posed and amplifies small perturbations causing large sudden increases or decreases of differential reluctivity values, which may cause numerical problems. A rule based algorithm for conditioning differential reluctivity values is presented. Unwanted perturbations on the computed differential reluctivity values are eliminated or reduced with the aim to guarantee convergence. Details of the algorithm are presented together with an evaluation of the algorithm by a numerical example. The algorithm is shown to guarantee convergence, although the rate of convergence depends on the choice of algorithm parameters. © 2011 IEEE.
Resumo:
A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa. © 2011 IEEE.
Resumo:
We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.
Resumo:
Gas hydrate is a crystalline solid found within marine and subpermafrost sediments. While the presence of hydrates can have a profound effect on sediment properties, the stress-strain behavior of hydrate-bearing sediments is poorly understood due to inherent limitations in laboratory testing. In this study, we use numerical simulations to improve our understanding of the mechanical behavior of hydrate-bearing sands. The hydrate mass is simulated as either small randomly distributed bonded grains or as "ripened hydrate" forming patchy saturation, whereby sediment clusters with 100% pore-filled hydrate saturation are distributed within a hydrate-free sediment. Simulation results reveal that reduced sand porosity and higher hydrate saturation cause an increase in stiffness, strength, and dilative tendency, and the critical state line shifts toward higher void ratio and higher shear strength. In particular, the critical state friction angle increases in sands with patchy saturation, while the apparent cohesion is affected the most when the hydrate mass is distributed in pores. Sediments with patchy hydrate distribution exhibit a slightly lower strength than sediments with randomly distributed hydrate. Finally, hydrate dissociation under drained conditions leads to volume contraction and/or stress relaxation, and pronounced shear strains can develop if the hydrate-bearing sand is subjected to deviatoric loading during dissociation.
Resumo:
A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
A novel technique is presented to facilitate the implementation of hierarchical b-splines and their interfacing with conventional finite element implementations. The discrete interpretation of the two-scale relation, as common in subdivision schemes, is used to establish algebraic relations between the basis functions and their coefficients on different levels of the hierarchical b-spline basis. The subdivision projection technique introduced allows us first to compute all element matrices and vectors using a fixed number of same-level basis functions. Their subsequent multiplication with subdivision matrices projects them, during the assembly stage, to the correct levels of the hierarchical b-spline basis. The proposed technique is applied to convergence studies of linear and geometrically nonlinear problems in one, two and three space dimensions. © 2012 Elsevier B.V.
Resumo:
Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.
Resumo:
This work is concerned with the structural behaviour and the integrity of parallel plate-type nuclear fuel assemblies. A plate-type assembly consists of several thin plates mounted in a box-like structure and is subjected to a coolant flow that can result in a considerable drag force. A finite element model of an assembly is presented to study the sensitivity of the natural frequencies to the stiffness of the plates' junctions. It is shown that the shift in the natural frequencies of the torsional modes can be used to check the global integrity of the fuel assembly while the local natural frequencies of the inner plates can be used to estimate the maximum drag force they can resist. Finally a non-destructive method is developed to assess the resistance of the inner plates to bear an applied load. Extensive computational and experimental results are presented to prove the applicability of the method presented. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation. © 2013 AIP Publishing LLC.