952 resultados para economic impacts
Resumo:
Rose-ringed parakeets (Psittacula krameri) have become widely established outside their native range through accidental or deliberate release. Potential economic impacts on agriculture, conservation concerns, and mixed public opinion regarding the species have highlighted the need to develop effective but humane management options. Fertility control might provide such a solution if a safe and environmentally benign contraceptive was available. The chemical 20,25-diazacholesterol dihydrochloride (diazacon) has previously been used to reduce reproductive output in avian species through reduction of blood cholesterol and cholesterol-dependent reproductive hormones. We orally dosed captive rose-ringed parakeets with a solution of either 9 mg/kg or 18 mg/kg of diazacon for up to 10 days and found that a dose of 18 mg/kg for 10 days temporarily reduced blood cholesterol levels with no adverse side effects. We evaluated this dose level in a captive population in semi-natural conditions during the 2008 breeding season and found a significant decrease in fertility. We concluded that diazacon has potential for fertility control in this species if a suitable formulation and delivery system is developed for free-living populations.
Resumo:
The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.
Resumo:
La ricerca è mirata a valutare come l’attuazione delle politiche ambientali di Sviluppo Rurale possa contribuire al miglioramento del paesaggio, analizzando i suoi effetti territoriali. Nell’ambito del caso di studio della Regione Emilia-Romagna vengono analizzate le misure agro-ambientali e di forestazione agricola dal 1994 al 2011, comprendendo gli interventi realizzati con i Regolamenti (CEE) 2078/1992, 2080/1992 e dai Programmi di Sviluppo Rurale (PSR) 2000-2006 e 2007-2013. In particolare, sono approfonditi i fattori che determinano la partecipazione territoriale delle misure agro-ambientali, individuate a livello aziendale le motivazioni alla partecipazione per le azioni con effetto diretto sul paesaggio, valutati i conseguenti effetti tecnico-economici e analizzati gli impatti degli interventi sul paesaggio a livello territoriale, in funzione del contesto ambientale. I risultati hanno consentito di approfondire quanto già riportato nelle valutazioni istituzionali dei PSR e in letteratura scientifica, individuando i fattori determinanti della partecipazione a livello regionale. A questo scopo sono state utilizzate analisi di econometria spaziale che hanno permesso di evidenziare effetti di concentrazione territoriale delle superfici sotto impegno, in funzione delle priorità della misura e degli ordinamenti produttivi dei beneficiari. Sono stati inoltre analizzati gli impatti paesaggistici in un’area di studio ristretta a livello territoriale e aziendale: gli interventi specifici, in alcuni contesti territoriali dove è stata raggiunta una certa concentrazione delle superfici sotto impegno, hanno modificato il paesaggio rurale, differenziandolo rispetto alla matrice agricola intensiva in cui sono stati inseriti. A livello aziendale sono stati rilevati effetti significativi sull’economia dei beneficiari che scelgono di aderire a tali misure, con un diffuso effetto di riduzione della redditività. I contributi compensano in maniera differenziata i costi legati all’implementazione degli interventi in funzione della tipologia di intervento e delle scelte tecniche aziendali adottate per la loro gestione.
Resumo:
Il progetto di ricerca è finalizzato allo sviluppo di una metodologia innovativa di supporto decisionale nel processo di selezione tra alternative progettuali, basata su indicatori di prestazione. In particolare il lavoro si è focalizzato sulla definizione d’indicatori atti a supportare la decisione negli interventi di sbottigliamento di un impianto di processo. Sono stati sviluppati due indicatori, “bottleneck indicators”, che permettono di valutare la reale necessità dello sbottigliamento, individuando le cause che impediscono la produzione e lo sfruttamento delle apparecchiature. Questi sono stati validati attraverso l’applicazione all’analisi di un intervento su un impianto esistente e verificando che lo sfruttamento delle apparecchiature fosse correttamente individuato. Definita la necessità dell’intervento di sbottigliamento, è stato affrontato il problema della selezione tra alternative di processo possibili per realizzarlo. È stato applicato alla scelta un metodo basato su indicatori di sostenibilità che consente di confrontare le alternative considerando non solo il ritorno economico degli investimenti ma anche gli impatti su ambiente e sicurezza, e che è stato ulteriormente sviluppato in questa tesi. Sono stati definiti due indicatori, “area hazard indicators”, relativi alle emissioni fuggitive, per integrare questi aspetti nell’analisi della sostenibilità delle alternative. Per migliorare l’accuratezza nella quantificazione degli impatti è stato sviluppato un nuovo modello previsionale atto alla stima delle emissioni fuggitive di un impianto, basato unicamente sui dati disponibili in fase progettuale, che tiene conto delle tipologie di sorgenti emettitrici, dei loro meccanismi di perdita e della manutenzione. Validato mediante il confronto con dati sperimentali di un impianto produttivo, si è dimostrato che tale metodo è indispensabile per un corretto confronto delle alternative poiché i modelli esistenti sovrastimano eccessivamente le emissioni reali. Infine applicando gli indicatori ad un impianto esistente si è dimostrato che sono fondamentali per semplificare il processo decisionale, fornendo chiare e precise indicazioni impiegando un numero limitato di informazioni per ricavarle.
Resumo:
Due to its environmental, safety, health and socio-economic impacts, marine litter has been recognized as a 21st century global challenge, so that it has been included in Descriptor 10 of the EU MSFD. For its morphological features and anthropogenic pressures, the Adriatic Sea is very sensitive to the accumulation of debris, but data are inconsistent and fragmented. This thesis, in the framework of DeFishGear project, intents to assess marine litter on beaches and on seafloor in the Western Adriatic sea, and test if debris ingestion by fish occurs. Three beaches were sampled during two surveys in 2015. Benthic litter monitoring was carried out in the FAO GSA17 during fall 2014, using a rapido trawl. Litter ingestion was investigated through gut contents analysis of 260 fish belonging to 8 commercial species collected in Western Gulf of Venice. Average litter density on beaches was 1.5 items/m2 during spring, and decreased to 0.8 items/m2 in summer. Litter composition was heterogeneous and varied among sites, even if no significant differences were found. Most of debris consisted of plastic sheets, fragments, polystyrene pieces, mussels nets and cottons bud sticks, showing that sources are many and include aquaculture, land-based activities and local users of beaches. Average density of benthic litter was 913 items/Km2 (82 Kg/Km2). Plastic dominated in terms of numbers and weight, and consisted mainly of bags, sheets and mussel nets. The highest density was found close to the coast, and sources driving the major differences in litter distribution were mussel farms and shipping lanes. Litter ingestion occurred in 47% of examined fish, mainly consisting of fibers. Among species, S. pilchardus swallowed almost all debris categories. Findinds may provide a baseline to set the necessary measures to manage and minimize marine litter in the Western Adriatic region and to protect aquatic life from plastic pollution, even accounting the possible implications on human health.
Resumo:
Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.step-project.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales.
Resumo:
Potential future changes in tropical cyclone (TC) characteristics are among the more serious regional threats of global climate change. Therefore, a better understanding of how anthropogenic climate change may affect TCs and how these changes translate in socio-economic impacts is required. Here, we apply a TC detection and tracking method that was developed for ERA-40 data to time-slice experiments of two atmospheric general circulation models, namely the fifth version of the European Centre model of Hamburg model (MPI, Hamburg, Germany, T213) and the Japan Meteorological Agency/ Meteorological research Institute model (MRI, Tsukuba city, Japan, TL959). For each model, two climate simulations are available: a control simulation for present-day conditions to evaluate the model against observations, and a scenario simulation to assess future changes. The evaluation of the control simulations shows that the number of intense storms is underestimated due to the model resolution. To overcome this deficiency, simulated cyclone intensities are scaled to the best track data leading to a better representation of the TC intensities. Both models project an increased number of major hurricanes and modified trajectories in their scenario simulations. These changes have an effect on the projected loss potentials. However, these state-of-the-art models still yield contradicting results, and therefore they are not yet suitable to provide robust estimates of losses due to uncertainties in simulated hurricane intensity, location and frequency.
Resumo:
Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.
Resumo:
Consequence analysis is a key aspect of anchoring assessment of landslide impacts to present and long-term development planning. Although several approaches have been developed over the last decade, some of them are difficult to apply in practice, mainly because of the lack of valuable data on historical damages or on damage functions. In this paper, two possible consequence indicators based on a combination of descriptors of the exposure of the elements at risk are proposed in order to map the potential impacts of landslides and highlight the most vulnerable areas. The first index maps the physical vulnerability due to landslide; the second index maps both direct damage (physical, structural, functional) and indirect damage (socio-economic impacts) of landslide hazards. The indexes have been computed for the 200 km2 area of the Barcelonnette Basin (South French Alps), and their potential applications are discussed.
Resumo:
Estuarine organisms are exposed to periodic strong fluctuations in seawater pH driven by biological carbon dioxide (CO2) production, which may in the future be further exacerbated by the ocean acidification associated with the global rise in CO2. Calcium carbonate-producing marine species such as mollusks are expected to be vulnerable to acidification of estuarine waters, since elevated CO2 concentration and lower pH lead to a decrease in the degree of saturation of water with respect to calcium carbonate, potentially affecting biomineralization. Our study demonstrates that the increase in CO2 partial pressure (pCO2) in seawater and associated decrease in pH within the environmentally relevant range for estuaries have negative effects on physiology, rates of shell deposition and mechanical properties of the shells of eastern oysters Crassostrea virginica (Gmelin). High CO2 levels (pH ~7.5, pCO2 ~3500 µatm) caused significant increases in juvenile mortality rates and inhibited both shell and soft-body growth compared to the control conditions (pH ~8.2, pCO2 ~380 µatm). Furthermore, elevated CO2 concentrations resulted in higher standard metabolic rates in oyster juveniles, likely due to the higher energy cost of homeostasis. The high CO2 conditions also led to changes in the ultrastructure and mechanical properties of shells, including increased thickness of the calcite laths within the hypostracum and reduced hardness and fracture toughness of the shells, indicating that elevated CO2 levels have negative effects on the biomineralization process. These data strongly suggest that the rise in CO2 can impact physiology and biomineralization in marine calcifiers such as eastern oysters, threatening their survival and potentially leading to profound ecological and economic impacts in estuarine ecosystems.
Resumo:
本稿では、アフリカにおいて発展しつつある株式市場が、アフリカの各国経済に与える影響を分析する。最初に、アフリカの株式市場が、世界と比較すれば金額では小さいものの、アフリカの中ですでに活用されており、国際投資家からも注目されているという現実を明らかにする。次に、Sugimoto, Matsuki and Yoshida[2014]を概説し、アフリカ主要7カ国の株式市場のリターン(収益率)は、2004年以降、グローバル市場の動きから最も影響を受けており、世界金融危機などの際には平時よりも大きなグローバルショックを受けていたことを示す。最後に、アフリカ16カ国における株式市場の域内相互依存度を、固定相関係数(CCC-GARCH)モデルを用いて比較し、2012年以降、各地域共通の証券取引所創設にむけて積極的に連携姿勢を示すアフリカ諸国の間で、株式市場の地域的な連動性が高まってきていることを確認する。
Resumo:
The concept and logic of the "smile curve" in the context of global value chains has been widely used and discussed at the individual firm level, but rarely identified and investigated at the country and industry levels by using real data. This paper proposes an idea, based on an inter-country input-output model, to consistently measure both the strength and length of linkages between producers and consumers along global value chains. This idea allows for better identification and mapping of smile curves for countries and industries according to their positions and degrees of participation in a given conceptual value chain. Using the 1995-2011 World Input-Output Tables, several conceptual value chains are investigated, including exports of electrical and optical equipment from China and Mexico and exports of automobiles from Japan and Germany. The identified smile curves provide a very intuitive and visual image, which can significantly improve our understanding of the roles played by different countries and industries in global value chains. Further, the smile curves help identify the benefits gained by these countries and industries through their participation in global trade.
Resumo:
In order to illustrate how the input-output approach can be used to explore various aspects of a country's participation in GVCs, this paper applies indicators derived from the concept of trade in value-added (TiVA) to the case of Costa Rica. We intend to provide developing countries that seek to foster GVC-driven structural transformation with an example that demonstrates an effective way to measure progress. The analysis presented in this paper makes use of an International Input-Output Table (IIOT) that was constructed by including Costa Rica's first Input-Output Table (IOT) into an existing IIOT. The TiVA indicator has been used to compare and contrast import flows, export flows and bilateral trade balances in terms of gross trade and trade in value-added. The country's comparative advantage is discussed based on a TiVA-related indicator of revealed comparative advantage. The paper also decomposes the domestic content of value added in each sector and measures the degree of fragmentation in the value chains in which Costa Rica participates, highlighting the partner countries that add the most value.
Resumo:
El objetivo de esta investigación es desarrollar una metodología para estimar los potenciales impactos económicos y de transporte generados por la aplicación de políticas en el sector transporte. Los departamentos de transporte y otras instituciones gubernamentales relacionadas se encuentran interesadas en estos análisis debido a que son presentados comúnmente de forma errónea por la insuficiencia de datos o por la falta de metodologías adecuadas. La presente investigación tiene por objeto llenar este vacío haciendo un análisis exhaustivo de las técnicas disponibles que coincidan con ese propósito. Se ha realizado un análisis que ha identificado las diferencias cuando son aplicados para la valoración de los beneficios para el usuario o para otros efectos como aspectos sociales. Como resultado de ello, esta investigación ofrece un enfoque integrado que incluye un modelo Input-Output de múltiples regiones basado en la utilidad aleatoria (RUBMRIO), y un modelo de red de transporte por carretera. Este modelo permite la reproducción con mayor detalle y realismo del transporte de mercancías que por medio de su estructura sectorial identifica los vínculos de las compras y ventas inter-industriales dentro de un país utilizando los servicios del transporte de mercancías. Por esta razón, el modelo integrado es aplicable a diversas políticas de transporte. En efecto, el enfoque se ha aplicado para estudiar los efectos macroeconómicos regionales de la implementación de dos políticas diferentes en el sistema de transporte de mercancías de España, tales como la tarificación basada en la distancia recorrida por vehículo-kilómetro (€/km) aplicada a los vehículos del transporte de mercancías, y para la introducción de vehículos más largos y pesados de mercancías en la red de carreteras de España. El enfoque metodológico se ha evaluado caso por caso teniendo en cuenta una selección de la red de carreteras que unen las capitales de las regiones españolas. También se ha tenido en cuenta una dimensión económica a través de una tabla Input-Output de múltiples regiones (MRIO) y la base de datos de conteo de tráfico existente para realizar la validación del modelo. El enfoque integrado reproduce las condiciones de comercio observadas entre las regiones usando el sistema de transporte de mercancías por carretera, y que permite por comparación con los escenarios de políticas, determinar las contribuciones a los cambios distributivos y generativos. Así pues, el análisis estima los impactos económicos en cualquier región considerando los cambios en el Producto Interno Bruto (PIB) y el empleo. El enfoque identifica los cambios en el sistema de transporte a través de todos los caminos de la red de transporte a través de las medidas de efectividad (MOEs). Los resultados presentados en esta investigación proporcionan evidencia sustancial de que en la evaluación de las políticas de transporte, es necesario establecer un vínculo entre la estructura económica de las regiones y de los servicios de transporte. Los análisis muestran que para la mayoría de las regiones del país, los cambios son evidentes para el PIB y el empleo, ya que el comercio se fomenta o se inhibe. El enfoque muestra cómo el tráfico se desvía en ambas políticas, y también determina detalles de las emisiones de contaminantes en los dos escenarios. Además, las políticas de fijación de precios o de regulación de los sistemas de transporte de mercancías por carretera dirigidas a los productores y consumidores en las regiones promoverán transformaciones regionales afectando todo el país, y esto conduce a conclusiones diferentes. Así mismo, este enfoque integrado podría ser útil para evaluar otras políticas y otros países en todo el mundo. The purpose of this research is to develop a methodological approach aimed at assessing the potential economic and transportation impacts of transport policies. Transportation departments and other related government parties are interested in such analysis because it is commonly misrepresented for the insufficiency of data and suitable methodologies available. This research is directed at filling this gap by making a comprehensive analysis of the available techniques that match with that purpose. The differences when they are applied for the valuation of user benefits or for other impacts as social matters have been identified. As a result, this research presents an integrated approach which includes both a random utility-based multiregional Input-Output model (RUBMRIO), and a road transport network model. This model accounts for freight transport with more detail and realism because its commodity-based structure traces the linkages of inter-industry purchases and sales that use freight services within a given country. For this reason, the integrated model is applicable to various transport policies. In fact, the approach is applied to study the regional macroeconomic effects of implementing two different policies in the freight transport system of Spain, such as a distance-based charge in vehicle-kilometer (€/km) for Heavy Goods Vehicles (HGVs), and the introduction of Longer and Heavier Vehicles (LHVs) in the road network of Spain. The methodological approach has been evaluated on a case by case basis considering a selected road network of highways linking the capitals of the Spanish regions. It has also considered an economic dimension through a Multiregional Input Output Table (MRIO) and the existing traffic count database used in the model validation. The integrated approach replicates observed conditions of trade among regions using road freight transport systems that determine contributions to distributional and generative changes by comparison with policy scenarios. Therefore, the model estimates economic impacts in any given area by considering changes in Gross Domestic Product (GDP), employment (jobs), and in the transportation system across all paths of the transport network considering Measures of effectiveness (MOEs). The results presented in this research provide substantive evidence that in the assessment of transport policies it is necessary to establish a link between the economic structure of regions and the transportation services. The analysis shows that for most regions in the country, GDP and employment changes are noticeable when trade is encouraged or discouraged. This approach shows how traffic is diverted in both policies, and also provides details of the pollutant emissions in both scenarios. Furthermore, policies, such as pricing or regulation of road freight transportation systems, directed to producers and consumers in regions will promote different regional transformations across the country, and this lead to different conclusions. In addition, this integrated approach could be useful to assess other policies and countries worldwide.
Resumo:
This paper addresses the economic impact assessment of the construction of a new road on the regional distribution of jobs. The paper summarizes different existing model approaches considered to assess economic impacts through a literature review. Afterwards, we present the development of a comprehensive approach for analyzing the interaction of new transport infrastructure and the economic impact through an integrated model. This model has been applied to the construction of the motorway A-40 in Spain (497 Km.) which runs across three regions without passing though Madrid City. This may in turn lead to the relocation of labor and capital due to the improvement of accessibility of markets or inputs. The result suggests the existence of direct and indirect effects in other regions derived from the improvement of the transportation infrastructure, and confirms the relevance of road freight transport in some regions. We found that the changes in regional employment are substantial for some regions (increasing or decreasing jobs), but a t the same time negligible in other regions. As a result,the approach provides broad guidance to national governments and other transport-related parties about the impacts of this transport policy.