937 resultados para dye sensitized solar cells pseudorotaxane iron NHC cyclopentadienone water solubility
Resumo:
For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. Internally radiated photons can be directly emitted from the cell, but if confined by good internal reflectors at the front and back of the cell they can also be re-absorbed with a significant probability. This so-called photon recycling leads to an increase in the equilibrium minority carrier concentration and therefore the open-circuit voltage, Voc. In multijunction cells, the internal luminescence from a particular junction can also be coupled into a lower bandgap junction where it generates photocurrent in addition to the externally generated photocurrent, and affects the overall performance of the tandem. We demonstrate and discuss the implications of a detailed model that we have developed for real, non-idealized solar cells that calculates the external luminescent efficiency, accounting for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell and isotropic internal emission. The calculation leads to Voc, and we show data on high quality GaAs cells that agree with the trends in the model as the optics are systematically varied. For multijunction cells the calculation also leads to the luminescent coupling efficiency, and we show data on GaInP/GaAs tandems where the trends also agree as the coupling is systematically varied. In both cases, the effects of the optics are most prominent in cells with good material quality. The model is applicable to any solar cell for which the optical properties of each layer are well-characterized, and can be used to explore a wide phase space of design for single junction and multijunction solar cells.
Resumo:
Hydrogenated amorphous silicon thin films were deposited using a high pressure sputtering (HPS) system. In this work, we have studied the composition and optical properties of the films (band-gap, absorption coefficient), and their dependence with the deposition parameters. For films deposited at high pressure (1 mbar), composition measurements show a critical dependence of the purity of the films with the RF power. Films manufactured with RF-power above 80W exhibit good properties for future application, similar to the films deposited by CVD (Chemical Vapor Deposition) for hydrogenated amorphous silicon.
Resumo:
In this work we present the results and analysis of a 10 MeV proton irradiation experiment performed on III-V semiconductor materials and solar cells. A set of representative devices including lattice-matched InGaP/GaInAs/Ge triple junction solar cells and single junction GaAs and InGaP component solar cells and a Ge diode were irradiated for different doses. The devices were studied in-situ before and after each exposure at dark and 1 sun AM0 illumination conditions, using a solar simulator connected to the irradiation chamber through a borosilicate glass window. Ex-situ characterization techniques included dark and 1 sun AM0 illumination I-V measurements. Furthermore, numerical simulation of the devices using D-AMPS-1D code together with calculations based on the TRIM software were performed in order to gain physical insight on the experimental results. The experiment also included the proton irradiation of an unprocessed Ge solar cell structure as well as the irradiation of a bare Ge(100) substrate. Ex-situ material characterization, after radioactive deactivation of the samples, includes Raman spectroscopy and spectral reflectivity.
Resumo:
In high quality solar cells, the internal luminescence can be harnessed to enhance the overall performance. Internal confinement of the photons can lead to an increased open-circuit voltage and short-circuit current. Alternatively, in multijunction solar cells the photons can be coupled from a higher bandgap junction to a lower bandgap junction for enhanced performance. We model the solar cell as an optical cavity and compare calculated performance characteristics with measurements. We also describe how very high luminescent coupling alleviates the need for top-cell thinning to achieve current-matching.
Resumo:
We introduce one trivial but puzzling solar cell structure. It consists of a high bandgap pn junction (top cell) grown on a substrate of lower bandgap. Let us assume, for example, that the bandgap of the top cell is 1.85 eV (Al 0.3Ga 0.7As) and the bandgap of the substrate is 1.42 eV (GaAs). Is the open-circuit of the top cell limited to 1.42 V or to 1.85 V? If the answer is ldquo1.85 Vrdquo we could then make the mind experiment in which we illuminate the cell with 1.5 eV photons (notice these photons would only be absorbed in the substrate). If we admit that these photons can generate photocurrent, then because we have also admitted that the voltage is limited to 1.85 V, it might be possible that the electron-hole pairs generated by these photons were extracted at 1.6 V for example. However, if we do so, the principles of thermodynamics could be violated because we would be extracting more energy from the photon than the energy it initially had. How can we then solve this puzzle?
Resumo:
Vicinal Ge(100) is the common substrate for state of the art multi-junction solar cells grown by metal-organic vapor phase epitaxy (MOVPE). While triple junction solar cells based on Ge(100) present efficiencies mayor que 40%, little is known about the microscopic III-V/Ge(100) nucleation and its interface formation. A suitable Ge(100) surface preparation prior to heteroepitaxy is crucial to achieve low defect densities in the III-V epilayers. Formation of single domain surfaces with double layer steps is required to avoid anti-phase domains in the III-V films. The step formation processes in MOVPE environment strongly depends on the major process parameters such as substrate temperature, H2 partial pressure, group V precursors [1], and reactor conditions. Detailed investigation of these processes on the Ge(100) surface by ultrahigh vacuum (UHV) based standard surface science tools are complicated due to the presence of H2 process gas. However, in situ surface characterization by reflection anisotropy spectroscopy (RAS) allowed us to study the MOVPE preparation of Ge(100) surfaces directly in dependence on the relevant process parameters [2, 3, 4]. A contamination free MOVPE to UHV transfer system [5] enabled correlation of the RA spectra to results from UHV-based surface science tools. In this paper, we established the characteristic RA spectra of vicinal Ge(100) surfaces terminated with monohydrides, arsenic and phosphorous. RAS enabled in situ control of oxide removal, H2 interaction and domain formation during MOVPE preparation.
Resumo:
In the framework of the so-called third generation solar cells, three main concepts have been proposed in order to exceed the limiting efficiency of single-gap solar cells: the hot-carrier solar cell, the impact-ionization or multiple-exciton-generation solar cell, and the intermediate-band solar cell. At first sight, the three concepts are different, but in this paper, we illustrate how all these concepts, including the single-gap solar cell, share a common trunk that we call "core photovoltaic material." We demonstrate that each one of these next-generation concepts differentiates in fact from this trunk depending on the hypotheses that are made about the physical principles governing the electron electrochemical potentials. In the process, we also clarify the differences between electron, phonon, and photon chemical potentials (the three fundamental particles involved in the operation of the solar cell). The in-depth discussion of the physics involved about the operation of these cells also provides new insights about the operation of these cells.
Resumo:
ABSTRACT Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30-year warranty for these 1 mm2-sized GaAs cells (manufactured according to a light emitting diode-like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C.
Resumo:
Several attempts have been carried out to manufacture intermediate band solar cells (IBSC) by means of quantum dot (QD) superlattices. This novel photovoltaic concept allows the collection of a wider range of the sunlight spectrum in order to provide higher cell photocurrent while maintaining the open-circuit voltage (VOC) of the cell. In this work, we analyze InAs/GaAsN QD-IBSCs. In these cells, the dilute nitrogen in the barrier plays an important role for the strain-balance (SB) of the QD layer region that would otherwise create dislocations under the effect of the accumulated strain. The introduction of GaAsN SB layers allows increasing the light absorption in the QD region by multi-stacking more than 100 QD layers. The photo-generated current density (JL) versus VOC was measured under varied concentrated light intensity and temperature. We found that the VOC of the cell at 20 K is limited by the bandgap of the GaAsN barriers, which has important consequences regarding IBSC bandgap engineering that are also discussed in this work.
Resumo:
In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the QDs are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of QDs and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of QDs and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.
Resumo:
Solid State Lasers (SSL) have been used in microelectronic and photovoltaic (PV) industry for decades but, currently, laser technology appears as a key enabling technology to improve efficiency and to reduce production costs in high efficiency solar cells fabrication. Moreover, the fact that the interaction between the laser radiation and the device is normally localized and restricted to a controlled volume makes SSL a tool of choice for the implementation of low temperature concepts in PV industry. Specifically, SSL are ideally suited to improve the electrical performance of the contacts further improving the efficiency of these devices. Advanced concepts based on standard laser firing or advanced laser doping techniques are optimal solutions for the back contact of a significant number of structures of growing interest in the c-Si PV industry, and a number of solutions has been proposed as well for emitter formation, to reduce the metallization optical losses or even to remove completely the contacts from the front part of the cell. In this work we present our more recent results of SSL applications for contact optimization in c-Si solar cell technology, including applications on low temperature processes demanding devices, like heterojunction solar cells.
Resumo:
In this work the failure analysis carried out in III-V concentrator multijunction solar cells after a temperature accelerated life test is presented. All the failures appeared have been catastrophic since all the solar cells turned into low shunt resistances. A case study in failure analysis based on characterization by optical microscope, SEM, EDX, EQE and XPS is presented in this paper, revealing metal deterioration in the bus bar and fingers as well as cracks in the semiconductor structure beneath or next to the bus bar. In fact, in regions far from the bus bar the semiconductor structure seems not to be damaged. SEM images have dismissed the presence of metal spikes inside the solar cell structure. Therefore, we think that for these particular solar cells, failures appear mainly as a consequence of a deficient electrolytic growth of the front metallization which also results in failures in the semiconductor structure close to the bus bars.
Resumo:
In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM) process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.
Resumo:
We have analyzed the spectral sub-bandgap photoresponse of silicon (Si) samples implanted with vanadium (V) and titanium (Ti) at different doses and subsequently processed by pulsed-laser melting.
Resumo:
Within the framework of the third solar cell generation some new ideas to enlarge the spectral response of the solar cells toward the infrared have been proposed. Among them the inclusion of an Intermediate Band (IB) seems to be very promising. This paper will deal with one of the ways to generate the IB namely the deep level center approach. We will discuss not only its existence but also the carriers lifetime recovery which is necessary to obtain the expected increase of the solar cell efficiency.