856 resultados para domestic effluent
Resumo:
In this paper we examine whether airline prices on national routes are higher than those charged on international routes. Drawing on a database prepared specifically for this study, we estimate a pricing equation for all routes originating from Gran Canaria, Canary Islands, Spain; differentiating between national and international routes. A key difference between these two route types is that island residents benefit from discounts on domestic flights. When controlling for variables related to airline characteristics, market structure and demand, we find that national passengers who are non-residents on the islands are paying higher prices than international passengers.
Resumo:
The Municipal Station of Americana, SP, Brazil, treats a volume of 400 l s-1 of effluent, of domestic and textile origin, and produces about 20 t of sludge per day. The plant horseradish, which contains high amount of peroxidases, was able to decolorize this effluent in 2 h and the solid waste in 2 days, at concentrations of 10 and 50%, respectively. However, there was an increase in the toxicity for the bioassays with Hydra attenuatta, Selenastrum capricornutum and lettuce seeds, indicating formation of more toxic substances. Since horseradish showed the ability to decolorize these residues, it can be used as pre-treatment resulting in a sludge of less complex composition.
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making
Resumo:
The present study deals with phenol adsorption on chitin and chitosan and removal of contaminants from wastewater of a petroleum refinery. The adsorption kinetic data were best fitted to first- and second-order models for chitosan and chitin, respectively. The results of adsorption isotherms showed Langmuir model more appropriately described than a Freundlich model for both adsorbents. The adsorption capacity was 1.96 and 1.26 mg/g for chitin and chitosan, respectively. Maximum removal of phenol was about 70-80% (flow rate: 1.5 mL/min, bed height: 18.5 cm, and 30 mg/L of phenol. Wastewater treatment with chitin in a fixed-bed system showed reductions of about 52 and 92% for COD and oil and greases, and for chitosan 65 and 67%, respectively. The results show improvement of the effluent quality after treatment with chitin and chitosan.
Resumo:
In this work we describe a new efficient strategy for the preparation of 1,2,4-trimethoxybenzene (3) in 56% overall yield. The compound 3 was used in a preliminary study of insect attraction by a mixture of semiochemicals called TIV, composed of indol (1), vanillin (2) and 1,2,4-trimethoxybenzene (3), in eight Mc Phail style traps installed at a domestic orchard of citric-culture, containing 120 trees not infected by plagues in Bom Jesus Farm, located next to a patch of the Atlantic Forest, at Silva Jardim, Rio de Janeiro, Brazil.
Resumo:
Palm oil is one of the two most important vegetable oils in the world's oil and fats market. The extraction and purification processes generate different kinds of waste generally known as palm oil mill effluent (POME). Earlier studies had indicated the possibility of using boiler fly ash to adsorb impurities and colour in POME treatment. The adsorption treatment of POME using boiler fly ash was further investigated in detail in this work with regards to the reduction of BOD, colour and TSS from palm oil mill effluent. The amount of BOD, colour and TSS adsorbed increased as the weight of the boiler fly ash used was increased. Also, the smaller particle size of 425µm adsorbed more than the 850µm size. Attempts were made to fit the experimental data with the Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The R² values, which ranged from 0.8974-0.9898, 0.8848-0.9824 and 0.6235-0.9101 for Freundlich, Langmuir and Dubinin-Radushkevich isotherms respectively, showed that Freundlich isotherm gave a better fit followed by Langmuir and then Dubinin-Radushkevich isotherm. The sorption trend could be put as BOD > Colour > TSS. The apparent energy of adsorption was found to be 1.25, 0.58 and 0.97 (KJ/mol) for BOD, colour and TSS respectively, showing that sorption process occurs by physiosorption. Therefore, boiler fly ash is capable of reducing BOD, Colour and TSS from POME and hence could be used to develop a good adsorbent for POME treatment.
Resumo:
Rising population, rapid urbanisation and growing industrialisation have severely stressed water quality and its availability in Malawi. In addition, financial and institutional problems and the expanding agro industry have aggravated this problem. The situation is worsened by depleting water resources and pollution from untreated sewage and industrial effluent. The increasing scarcity of clean water calls for the need for appropriate management of available water resources. There is also demand for a training system for conceptual design and evaluation for wastewater treatment in order to build the capacity for technical service providers and environmental practitioners in the country. It is predicted that Malawi will face a water stress situation by 2025. In the city of Blantyre, this situation is aggravated by the serious pollution threat from the grossly inadequate sewage treatment capacity. This capacity is only 23.5% of the wastewater being generated presently. In addition, limited or non-existent industrial effluent treatment has contributed to the severe water quality degradation. This situation poses a threat to the ecologically fragile and sensitive receiving water courses within the city. This water is used for domestic purposes further downstream. This manuscript outlines the legal and policy framework for wastewater treatment in Malawi. The manuscript also evaluates the existing wastewater treatment systems in Blantyre. This evaluation aims at determining if the effluent levels at the municipal plants conform to existing standards and guidelines and other associated policy and regulatory frameworks. The raw material at all the three municipal plants is sewage. The typical wastewater parameters are Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). The treatment target is BOD5, COD, and TSS reduction. Typical wastewater parameters at the wastewater treatment plant at MDW&S textile and garments factory are BOD5 and COD. The treatment target is to reduce BOD5 and COD. The manuscript further evaluates a design approach of the three municipal wastewater treatment plants in the city and the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory. This evaluation utilises case-based design and case-based reasoning principles in the ED-WAVE tool to determine if there is potential for the tool in Blantyre. The manuscript finally evaluates the technology selection process for appropriate wastewater treatment systems for the city of Blantyre. The criteria for selection of appropriate wastewater treatment systems are discussed. Decision support tools and the decision tree making process for technology selection are also discussed. Based on the treatment targets and design criteria at the eight cases evaluated in this manuscript in reference to similar cases in the ED-WAVE tool, this work confirms the practical use of case-based design and case-based reasoning principles in the ED-WAVE tool in the design and evaluation of wastewater treatment 6 systems in sub-Sahara Africa, using Blantyre, Malawi, as the case study area. After encountering a new situation, already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects. This work provides a training system for conceptual design and evaluation for wastewater treatment.
Trends and prospects in combating terrorism : a challenge for domestic or transnational cooperation?
Resumo:
The Brazil's Biodiesel Production and Use Program introduces biodiesel in the Brazilian energy matrix, bringing along the perspective of a growth of the glycerin offer, co-product generated in the proportion of 10 kg for each 100 L of biodiesel. The aim of this study was to evaluate the addition of crude glycerin in the anaerobic digestion of cassava starch industry effluent (cassava wastewater), in a horizontal semi-continuous flow reactor of one phase in laboratory scale. It was used a reactor with a 8.77 L of useful volume, a medium support for corrugated conduit of polyvinyl chloride (PVC), temperature of 261 ºC, fed with cassava wastewater and glycerin, with hydraulic detention times of 4 and 5 days and increasing volumetric organic load of 3.05; 9.32; 14.83 and 13.59 g COD L-1 d-1, obtained with the addition of glycerin at 0; 2; 3 and 2% (v/v), respectively. The average removal efficiencies of TS and TVS were decreasing from the addition of glycerin to the cassava wastewater, averaging 81.19 to 55.58% for TS and 90.21 to 61.45% for TVS. The addition of glycerin at 2% increased the biogas production compared to the control treatment, reaching 1.979 L L-1 d-1. The biogas production as a function of the consumed COD was higher for the control treatment than for the treatments with addition of glycerin, which indicates lower conversion of organic matter into biogas.
Resumo:
This paper sought to evaluate the behavior of an upflow Anaerobic-Aerobic Fixed Bed Reactor (AAFBR) in the treatment of cattle slaughterhouse effluent and determine apparent kinetic constants of the organic matter removal. The AAFBR was operated with no recirculation (Phase I) and with 50% of effluent recirculation (Phase II), with θ of 11h and 8h. In terms of pH, bicarbonate alkalinity and volatile acids, the results indicated the reactor ability to maintain favorable conditions for the biological processes involved in the organic matter removal in both operational phases. The average removal efficiencies of organic matter along the reactor height, expressed in terms of raw COD, were 49% and 68% in Phase I and 54% and 86% in Phase II for θ of 11h and 8h, respectively. The results of the filtered COD indicated removal efficiency of 52% and k = 0.0857h-1 to θ of 11h and 42% and k = 0.0880h-1 to θ of 8h in the Phase I. In Phase II, the removal efficiencies were 59% and 51% to θ of 11h and 8h, with k = 0.1238h-1 and k = 0.1075 h-1, respectively. The first order kinetic model showed good adjustment and described adequately the kinetics of organic matter removal for θ of 11h, with r² equal to 0.9734 and 0.9591 to the Phases I and II, respectively.
Resumo:
The aim of this study was to evaluate the efficiency of a sequencing batch reactor (SBR) on biological removal of nitrogen from cattle slaughterhouse wastewater by nitrification/denitrification processes. The effects of initial concentration of ammoniacal nitrogen were investigated at 100; 150 and 200 mg L-1 and air flow rate at 0.125; 0.375 and 0.625 L min¹ Lreactor-1 on the nitrogen compounds removal, by a Central Composite Rotational Design (CCRD) configuration. There were variations from 9.2 to 94.9%, 4.0 to 19.6% and 20.8 to 92.0% in the conversion of ammoniacal nitrogen to nitrate and nitrite concentration and removal of total nitrogen, respectively. The increase of air flow rate and decrease of the initial concentration of ammoniacal nitrogen resulted in higher efficiencies of total nitrogen removal, as well as the conversion of ammoniacal nitrogen to nitrate. During the pre-established intervals of this study, the removal and conversion efficiencies of nitrogen compounds above 85% were achieved in air flow rate variations from 0.375 to 0.725 L min-1 Lreactor-1 and initial concentration of ammoniacal nitrogen from 80 to 200 mg L-1. On denitrification process, we obtained efficiencies from 91.5 to 96.9% on the removal of nitrite/nitrate and from 78.3 to 87.9% on the removal of organic matter.
Resumo:
The industrial swine production is characterized by generation of significant effluent amounts that require treatment. The most adopted practices by Brazilian swine farmers have been wastewater storage in lagoons and its subsequent use as a biofertilizer. Nutrient accumulation in soil and water creates the need for an effective management of these residues. The anaerobic digestion process is an important alternative and low-cost treatment for organic matter reduction. However, its efficiency is limited by the digester capacity of solid degradation, especially at low hydraulic retention times. Thus, the present study aimed to verify the behavior of an upflow anaerobic digester by increasing the organic loading rate. This was accomplished in three stages using, as a parameter, volatile solids at 0.5; 1.0 and 1.5 kgVS m-3 d-1, respectively. This digester model proved to be quite robust and effective in swine manure treatment, achieving high efficiency of volatile solid removal at all stages of the study (stage 1: 61.38%; stage 2: 55.18%; and stage 3: 43.18%). Biogas production was directly related to the increasing organic load, reaching 0.14, 0.85, and 0.86 Nm³ kgVS-1add., respectively, with no significant difference (p<0.05) of biogas methane concentration among the studied stages (73.7, 75.0, and 77.9%).
Resumo:
The objective of this study was to evaluate production of Sweet Grape mini tomato (Lycopersicum esculentum Mill.) using culture substrates and nutrient solution sewage effluent, applied by drip irrigation (fertigation). The experiment was conducted at the University of Goiás State (UEG-UnUCET), from June to November 2011 in Anápolis-GO, Brazil. The experimental design was a 2 x 3 factorial arrangement in a randomized complete block design with four repetitions. The plots were made by combining two nutrient solutions, effluent supplemented with mineral fertilizers (EcS); conventional nutrient solution (SnC); in addition three cultivation substrates: 60% of fine sand washed + 40% substrate composed by 20% coconut fiber plus 80% pine bark (S1); 20% coconut fiber and 80% pine bark (S2) and natural coconut fiber (S3). Sewage effluent were determined nitrate, calcium, potassium, manganese, total phosphate, total iron, magnesium, chloride, sulphate, boron, zinc and molybdenum. We evaluated average mass and average number of fruits per bunch, total fruit and total yield per plant. Statistical difference absence among tested solutions indicates sewage effluent can be used as an alternative source of nutrients in growing mini tomatoes in hydroponics.
Resumo:
The objective of this study was to evaluate the productive performance of sunflower plants irrigated with different levels of domestic treated sewage and groundwater well with different doses of nitrogen. It was used randomized blocks design in split-split plots with four replications. In the plots, we evaluated the effect of two types of irrigation water, in the subplots we evaluated the five irrigation levels expressed as 25, 50, 75, 100 and 125% of the Class A pan Evaporation (CAE), and in the sub subplots, we evaluated the effect of four different doses of nitrogen (25, 50, 75 and 100 kg ha-1). The irrigation of sunflower with domestic sewage produced greater yield potential of grain and oil. The use of water from treated wastewater can replace up to 50 kg N ha-1 without affecting productivity. It is recommended for the commercial production of sunflower the use of treated sewage water with irrigation depth relative to 100% of CAE (296.64 mm) and nitrogen of 25 kg ha-1.
Resumo:
The cassava starch industries generate a large volume of wastewater effluent that, stabilized in ponds, wastes its biogas energy and pollutes the atmosphere. To contribute with the reversion of this reality, this manipueira treatment research was developed in one phase anaerobic horizontal pilot reactor with support medium in bamboo pieces. The reactor was excavated into the ground and sealed with geomembrane in HDPE, having a volume equal to 33.6 m³ and continuous feeding by gravity. The stability indicators were pH, volatile acidity/total alkalinity ratio and biogas production. The statistical analyses were performed by a completely randomized design, with answers submitted to multivariate analysis. The organical loads in COD were 0.556; 0.670; 0.678 and 0.770 g L-1 and in volatile solids (VS) of 0.659; 0.608; 0.570 and 0.761 g L-1 for the hydraulic retention times (HRT) of 13.0; 11.5; 10.0 and 7.0 days, respectively. The reductions in COD were 88; 80; 88 and 67% and for VS of 76; 77; 65 and 61%. The biogas productions relatively to the consumed COD were 0.368; 0.795; 0.891 and 0.907 Lg-1, for the consumed VS of 0.524; 0.930; 1.757 and 0.952 Lg-1 and volumetric of 0.131; 0.330; 0.430 and 0.374 L L-1 d-1. The reactor remained stable and the bamboo pieces, in visual examination at the end of the experiment, showed to be in good physical conditions.