865 resultados para digitalizador de imagens
Resumo:
This work proposes a method to localize a simple humanoid robot, without embedded sensors, using images taken from an extern camera and image processing techniques. Once the robot is localized relative to the camera, supposing we know the position of the camera relative to the world, we can compute the position of the robot relative to the world. To make the camera move in the work space, we will use another mobile robot with wheels, which has a precise locating system, and will place the camera on it. Once the humanoid is localized in the work space, we can take the necessary actions to move it. Simultaneously, we will move the camera robot, so it will take good images of the humanoid. The mainly contributions of this work are: the idea of using another mobile robot to aid the navigation of a humanoid robot without and advanced embedded electronics; chosing of the intrinsic and extrinsic calibration methods appropriated to the task, especially in the real time part; and the collaborative algorithm of simultaneous navigation of the robots
Resumo:
Image compress consists in represent by small amount of data, without loss a visual quality. Data compression is important when large images are used, for example satellite image. Full color digital images typically use 24 bits to specify the color of each pixel of the Images with 8 bits for each of the primary components, red, green and blue (RGB). Compress an image with three or more bands (multispectral) is fundamental to reduce the transmission time, process time and record time. Because many applications need images, that compression image data is important: medical image, satellite image, sensor etc. In this work a new compression color images method is proposed. This method is based in measure of information of each band. This technique is called by Self-Adaptive Compression (S.A.C.) and each band of image is compressed with a different threshold, for preserve information with better result. SAC do a large compression in large redundancy bands, that is, lower information and soft compression to bands with bigger amount of information. Two image transforms are used in this technique: Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA). Primary step is convert data to new bands without relationship, with PCA. Later Apply DCT in each band. Data Loss is doing when a threshold discarding any coefficients. This threshold is calculated with two elements: PCA result and a parameter user. Parameters user define a compression tax. The system produce three different thresholds, one to each band of image, that is proportional of amount information. For image reconstruction is realized DCT and PCA inverse. SAC was compared with JPEG (Joint Photographic Experts Group) standard and YIQ compression and better results are obtain, in MSE (Mean Square Root). Tests shown that SAC has better quality in hard compressions. With two advantages: (a) like is adaptive is sensible to image type, that is, presents good results to divers images kinds (synthetic, landscapes, people etc., and, (b) it need only one parameters user, that is, just letter human intervention is required
Sistema inteligente para detecção de manchas de óleo na superfície marinha através de imagens de SAR
Resumo:
Oil spill on the sea, accidental or not, generates enormous negative consequences for the affected area. The damages are ambient and economic, mainly with the proximity of these spots of preservation areas and/or coastal zones. The development of automatic techniques for identification of oil spots on the sea surface, captured through Radar images, assist in a complete monitoring of the oceans and seas. However spots of different origins can be visualized in this type of imaging, which is a very difficult task. The system proposed in this work, based on techniques of digital image processing and artificial neural network, has the objective to identify the analyzed spot and to discern between oil and other generating phenomena of spot. Tests in functional blocks that compose the proposed system allow the implementation of different algorithms, as well as its detailed and prompt analysis. The algorithms of digital image processing (speckle filtering and gradient), as well as classifier algorithms (Multilayer Perceptron, Radial Basis Function, Support Vector Machine and Committe Machine) are presented and commented.The final performance of the system, with different kind of classifiers, is presented by ROC curve. The true positive rates are considered agreed with the literature about oil slick detection through SAR images presents
Resumo:
There has been an increasing tendency on the use of selective image compression, since several applications make use of digital images and the loss of information in certain regions is not allowed in some cases. However, there are applications in which these images are captured and stored automatically making it impossible to the user to select the regions of interest to be compressed in a lossless manner. A possible solution for this matter would be the automatic selection of these regions, a very difficult problem to solve in general cases. Nevertheless, it is possible to use intelligent techniques to detect these regions in specific cases. This work proposes a selective color image compression method in which regions of interest, previously chosen, are compressed in a lossless manner. This method uses the wavelet transform to decorrelate the pixels of the image, competitive neural network to make a vectorial quantization, mathematical morphology, and Huffman adaptive coding. There are two options for automatic detection in addition to the manual one: a method of texture segmentation, in which the highest frequency texture is selected to be the region of interest, and a new face detection method where the region of the face will be lossless compressed. The results show that both can be successfully used with the compression method, giving the map of the region of interest as an input
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Em Santa Bárbara D'Oeste,SP, foram realizados dois mapeamentos do uso da terra em área de 14.625 ha. No primeiro utilizou-se fotografias aéreas verticais pancromáticas (data de 25/6/78), na escala 1:35.000, e no segundo utilizou-se imagens orbitais do satélite LANDSAT-5 com sensor Thematic Mapper (data de 12/8/91), escala 1: 100.000, nas bandas 3, 4 e 5 e composição colorida 3/4/5. Para auxiliar a confecção desses mapas, obteve-se chaves de interpretação, tanto para as aerofotos como para as imagens orbitais. As fotografias aéreas proporcionaram um maior nível de detalhamento na identificação do uso da terra. A banda 3 e a composição colorida 3/4/5 foram as mais eficientes entre as imagens orbitais. Entre 1978 e 1991, a área de ocorrência de cana-de-açúcar permaneceu a mesma, as áreas de mata e pastagem diminuíram, enquanto que as áreas de reflorestamento e urbana aumentaram. Essa região teve sua capacidade de uso enquadrada, na maior parte, na classe IV: terras mais apropriadas para pastagens ou plantas perenes como a cana-de-açúcar, devendo-se aplicar técnicas intensivas de conservação, e com aptidão baseada em práticas agrícolas que refletem um alto nível tecnológico.
Resumo:
Foram estudados, com o auxílio de fotografias aéreas, aspectos qualitativos e quantitativos do relevo e da rede de drenagem de solos de uma área de Santa Bárbara D'Oeste, SP. Esta região compreende 14.625 ha, onde foram selecionadas bacias hidrográficas de 3ª ordem de ramificação e amostras circulares de 5km². As unidades de mapeamento simples ou associações de solos são: Latossolo Vermelho Escuro, Podzólico, Litossolo + Podzólico, Terra Roxa Estruturada + Latossolo Roxo distrófico. Após a caracterização das feições fisiográficas, da área de ocorrência desses solos, foram realizados dois mapas morfopedológicos. No primeiro utilizou-se fotografias aéreas verticais pancromáticas na escala 1: 35.000 (data de 25/6/78) e no segundo imagens orbitais do sensor Thematic Mapper do LANDSAT-5, nas bandas 3, 4 e 5 e composição colorida 3/4/5 na escala 1: 100.000 (data de 12/9/91). As análises qualitativas e quantitativas do relevo (índice de declividade média) e rede de drenagem (densidade de drenagem, freqüência de rios, razão de textura) mostraram-se eficientes na diferenciação das unidades de solo estudadas, tanto em bacias hidrográficas como em amostras circulares. A utilização de fotografias aéreas, permitiu maior riqueza de detalhes na precisão dos limites das unidades de mapeamento e no maior número de unidades de mapeamento discriminadas em relação as imagens orbitais. A composição colorida 3/4/5 permitiu diferenciar os Latossolos argilosos dos Latossolos de textura média, assim como o Latossolo Húmico.
Resumo:
Imagens CCD/CBERS-2, nas bandas espectrais CCD2, CCD3 e CCD4, dos anos de 2004 e 2005, de Mirante do Paranapanema - SP, foram transformadas em reflectância de superfície usando o modelo 5S de correção atmosférica e normalizadas radiometricamente. O objetivo principal foi caracterizar espectralmente áreas de pastagens de Brachiaria brizantha em fase de florescimento, isentas e infectadas com a doença mela-das-sementes da braquiária, possibilitando a sua detecção por meio da comparação entre os valores de reflectância de superfície denominada de Fator de Reflectância Bidirecional de Superfície (FRBS). Teve-se, também, o objetivo de avaliar a eficácia das imagens CCD/CBERS-2 para a obtenção de respostas espectrais de pastagens. Os dosséis sadios e doentes da Brachiaria brizantha foram identificados por meio da análise dos valores de reflectância e dos dados observados no Índice de Estresse Hídrico Acumulativo Relativo da Cultura (ACWSI) obtidos na área de estudo. Os resultados indicaram que as principais diferenças foram a diminuição da reflectância na banda CCD3 e o aumento da reflectância na banda CCD4 nas áreas doentes. A metodologia empregada com o uso de dados do sensor CCD/CBERS-2, associados ao ACWSI, mostrou-se eficaz para discriminar dosséis infectados com a mela-das-sementes da braquiária.
Resumo:
The current accessibility to hyperspectral images of Hyperion/EO1 orbital sensor has brought new perspectives for studies of aquatic environments for allowing the remote estimative of several optically active constituents (OACs) in water body. The changes in the composition and concentration of OACs cause different patterns of absorption and scattering of electromagnetic radiation, likely to be detected using hyperspectral data. Therefore, an investigation was conducted taking into account the spectral characterization of water of a reservoir intended for public supply (Itupararanga Reservoir), from Hyperion/EO1 images and derivative analysis technique applied to spectral curves generated. Simultaneously to the acquisition of a Hyperion/EO1 image, a field campaign was carried out to collect limnological data in situ in georeferenced points. After radiometric correction of the image, reflectance curves of pixels were extracted for each station and the curves obtained were subjected to the technique of derivative analysis, which revealed features of absorption and scattering mainly associated to the presence of algal pigments. The results obtained show the presence of phytoplankton and algal activity, matching the field observation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mirror has always been related to different symbols, usually connected to self-knowledge and truth. This is due to the fact that this object shows whoever looks oneself in it an image as close to reality as it is possible. On the other hand, the mirror is also associated to mysticism and to the supernatural for it can magically duplicate one who looks into it. This ambiguous characteristic turns the mirror into an element that is fantastic in itself and places it in the central position of our discussion. Therefore, in this study, we analyze the texts In a Glass Darkly, by Agatha Christie, The Oval Portrait, by Edgar Allan Poe, and The Picture of Dorian Gray, by Oscar Wilde, giving special attention to the study of the images and artificial representations of men: the mirror, as an ephemeral representation; and the portrait, as an attempt to eternize an ephemeral image. We also discuss themes such as jealousy, the double, and death in the several forms in which it appears in the texts: suicides, homicides, attempted murders, death in life (mourning, separation, and developmental phases) all of which are, somehow, related to the specular representations. The narrative resource of using a mirror to introduce the supernatural event, along with the theme of death in all the narratives we have studied, and the difficulty to place these texts within the pre-established genres led us to categorize them as being part of a hybrid genre that presents characteristics both of the fantastic and of the detective story which we have named fantastic-detective story
Resumo:
The spatial resolution improvement of orbital sensors has broadened considerably the applicability of their images in solving urban areas problems. But as the spatial resolution improves, the shadows become even a more serious problem especially when detailed information (under the shadows) is required. Besides those shadows caused by buildings and houses, clouds projected shadows are likely to occur. In this case there is information occlusion by the cloud in association with low illumination and contrast areas caused by the cloud shadow on the ground. Thus, it's important to use efficient methods to detect shadows and clouds areas in digital images taking in count that these areas care for especial processing. This paper proposes the application of Mathematical Morphology (MM) in shadow and clouds detection. Two parts of a panchromatic QuickBird image of Cuiab-MT urban area were used. The proposed method takes advantage of the fact that shadows (low intensity - dark areas) and clouds (high intensity - bright areas) represent the bottom and top, respectively, of the image as it is thought to be a topographic surface. This characteristic allowed MM area opening and closing operations to be applied to reduce or eliminate the bottom and top of the topographic surface.