886 resultados para dextran coating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of the common polysaccharide dextran have been investigated in mixed solvents at two different temperatures using small-angle X-ray scattering (SAXS) and viscosity measurements. More specifically, binary mixtures of a good solvent (water, formamide, dimethylsulfoxide, ethanolamine) and the bad solvent ethanol as the minority component have been considered. The experimentally observed effects on the polymer conformation (intrinsic viscosity, coil radius, and radius of gyration) of the bad solvent addition are discussed in terms of hydrogen bonding density and are correlated with the Hansen solubility parameters and the surface tension of the solvent mixtures. Hydrogen bonding appears to be an important contributor to the solubility of dextran but is not sufficient to capture the dextran coil contraction in the mixtures of good+bad solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomechanical response of a silicon specimen coated with a sp3 crystalline carbon coating (1.8 nm thickness) was investigated using MD simulation. A sharp conical rigid tip was impacted at the speed of 50 m/sec up to a depth of ~80% of the coating thickness. Unlike pure silicon specimen, no metallic phase transformation was observed i.e. a thin coating was able to resist Si-I to Si-II metallic phase transformation signifying that the coating could alter the stress distribution and thereby the contact tribology of the substrate. The stress state of the system, radial distribution function and the load-displacement curve were all aligned with above observations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroless nickel composite (ENC) with various silicon carbide contents was deposited onto aluminium alloy (LM24) substrate. The wear behaviour and the microhardness of the composite coating samples were investigated and compared with particles free and aluminium substrate samples using micro-scale abrasion tester and microhardness tester respectively. The wear scar marks and wear volume were analysed by optical microscope. The wear tracks were further studied using scanning electron microscopy (SEM). The embedded particles were found to get pressed into the matrix which helps resisting further wearing process for composite samples. However, random orientation of microcuts and microfallow were seen for ENC sample but more uniform wearing was observed for EN sample. The composite coating with low content of SiC was worn minimum. Early penetration into the substrate was seen for samples with higher SiC content. Microhardness was improved after heat treatment for all the samples containing various SiC content. Under dry sliding condition, inclusion of particles in the matrix did not improve the wearing resistance performance in as-deposited state. The wearing worsened as the content of the particles increased generally. However, on heat treatment, the composite coatings exhibited improved wear resistance and the best result was obtained from the one with low particle contents.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the load effect clubbed with the influence of second phase particles on the coating at the vicinity of the interface. It was observed that zinc was absent at the interface after elevated temperature heat treatment at 400–500 °C. Precipitation of copper and nickel with a distinct demarcation (copper rich belt) along the coating interface was seen with irregular thickness of the order of 1 μm. Migration of copper from the bulk aluminium alloy could have been the factor. Brittleness of the coating was confirmed on heat treatment when indented with Vickers. However, in composite coating the propagation of the microcrack was stopped by the embedded particles but the microcracks continue in the matrix when not interrupted by second phase particles (SiC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up to 500 °C of heat treatment. The microhardness is increased on incorporation of SiC in Ni–P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface behaviour is of paramount importance as failure and degradation tend to initiate from the surface. Electroless composite coating (NiP/SiC) was developed using SiC as reinforcing particles. As heat treatment plays a vital role in electroless nickel coating owing to the changes in microstructure, phase structure and mechanical properties, an insight at the interface changes in chemistry and micromechanical behaviour was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) and microindentation techniques. Corrosion performance was analysed using electrochemical impedance spectroscopy (EIS). Absence of zinc and migration of copper at the interface was detected. Brittleness and microcracks was seen long the interface when indenting at load of 500 gf (Vickers). Corrosion performance is weaker than particles free coating. However, a thin blanket of NiP could enhance the resistance to corrosive medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of heat treatment. The microhardness is increased on incorporation of SiC in Ni-P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature. Overall, the composite coating (ENC) was found to be superior as compared to particles free (EN) coating in both as-deposited and heat-treated conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to particles free and the bare aluminium substrate. In as-deposited condition for the composite coating, the wear volume increases on increase in SiC percentage in the coating but is found to be minimum for lower SiC percentage. The increase in hardness on heat treatment at 400°C is due to the hardening or grain coarsening with the formation Ni3P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is accumulated in recycled steels and is difficult to be removed during steelmaking processes when steel scrap is used as steel sources. Meanwhile, copper characteristic properties are of importance both to human beings and to animals and plants. In this paper, integrated copper coating was observed on the surface of copper-containing steels when the steels were heated at around 1150°C. However, the copper was separately scattered after heating at 1000°C. The forming mechanisms of copper coating will be discussed in detail. By choosing proper descaling reagent, self-generated oxidation-induced copper coating appeared on the steel surface. The method proposed in this work is environmentally friendly for nontoxic chemicals being used. In addition, this provides a new concept for producing protective composite by oxidizing from the substrate directly and there is no binding problem.