934 resultados para cyclic imides
Resumo:
Many piled foundations have been destroyed under significant cyclic loads in earthquakes. Centrifuge modelling of a single pile subjected to cyclic loads has been conducted to investigate the influence of cyclic loads on the axial performance of the single pile. Different pile installation procedures were applied to compare the axial behaviour of different piles under cyclic loads. Pile head permanent settlements accumulated due to cyclic axial loads, and these increased with the increasing load amplitude. Also the pile head axial secant stiffness decreased with the increasing number of axial load cycles, and with increasing amplitude. Furthermore, the axial pile performance is influenced significantly by different installation methods. © 2010 ASCE.
Resumo:
The impact of Adaptive Cyclic Prefix (ACP) on the transmission performance of Adaptively Modulated Optical OFDM (AMOOFDM) is explored thoroughly in directly modulated DFB laser-based, IMDD links involving Multimode Fibres (MMFs)/Single-Mode Fibres (SMFs). Three ACP mechanisms are identified, each of which can, depending upon the link properties, affect significantly the AMOOFDM transmission performance. In comparison with AMOOFDM having a fixed cyclic prefix duration of 25%, AMOOFDM with ACP can not only improve the transmission capacity by a factor of >2 (>1.3) for >1000 m MMFs (<80 km SMFs) with 1 dB link loss margin enhancement, but also relax considerably the requirement on the DFB bandwidth.
Resumo:
This technical note studies global asymptotic state synchronization in networks of identical systems. Conditions on the coupling strength required for the synchronization of nodes having a cyclic feedback structure are deduced using incremental dissipativity theory. The method takes advantage of the incremental passivity properties of the constituent subsystems of the network nodes to reformulate the synchronization problem as one of achieving incremental passivity by coupling. The method can be used in the framework of contraction theory to constructively build a contracting metric for the incremental system. The result is illustrated for a network of biochemical oscillators. © 2011 IEEE.
Resumo:
Numerous piles are often subjected to the combination of cyclic axial and cyclic lateral loads in service, such as piled foundations for offshore platforms which may suffer swaying and rocking motions owing to wind and wave actions. In this research, centrifuge tests were conducted to investigate the effect of previous cyclic axial loads on the performance of pile groups subjected to subsequent cyclic lateral loads. Different pile installation methods were also applied to study the different behaviour of bored and jacked pile groups subjected to cyclic loads. During lateral load cycling, it is seen that cyclic axial loads to which pile groups were previously subjected could reduce the pile cap permanent lateral displacement in the first lateral load cycle but do not influence the incremental rate of permanent displacement in the following lateral load cycles. Moreover, it is found that previous cyclic axial loads could improve the pile cap cyclic lateral secant stiffness, especially for the pre-jacked pile group. When rocking motions were induced by cyclic lateral loads, pile groups subjected to cyclic axial loads before have smaller permanent settlement than those without the cyclic axial loading effect. The designers of piles that are intended to resist significant lateral loads without excessive deformations in service may wish to deploy cyclic axial preloading, accordingly.
Resumo:
We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character. Free-energy calculations also support the validity of the transition state theory for the present rearrangement reactions. The calculations demonstrate that cyclic delocalization represents a strong force to synchronize the thermal atomic motions even at high temperatures.
Resumo:
Jacked piles are becoming a valuable installation method due to the low noise and vibration involved in the installation procedure. Cyclic jacking may be used in an attempt to decrease the required installation force. Small scale models of jacked piles were tested in sand and silt in a 10 m beam centrifuge. Two different piles were tested: smooth and rough. Piles were driven in two ways with monotonic and cyclically jacked installations. The cyclically jacked installation involves displacement reversal at certain depth for a fixed number of cycles. The depth of reversal and amplitude of the cycle vary for different tests. Data show that the base resistance increases during cyclic jacking due to soil compaction at the pile toe. On the other hand, shaft load decreases with the number of cycles applied due to densification of soil next to the pile shaft. Cyclic jacking may be used in unplugged tubular piles to decrease the required installation load. © 2013 Taylor & Francis Group, London.
Resumo:
In the field of vibration-based damage detection of concrete structures efficient damage models are needed to better understand changes in the vibration properties of cracked structures. These models should quantitatively replicate the damage mechanisms in concrete and easily be used as damage detection tools. In this paper, the flexural cracking behaviour of plain concrete prisms subject to monotonic and cyclic loading regimes under displacement control is tested experimentally and modelled numerically. Four-point bending tests on simply supported un-notched prisms are conducted, where the cracking process is monitored using a digital image correlation system. A numerical model, with a single crack at midspan, is presented where the cracked zone is modelled using the fictitious crack approach and parts outside that zone are treated in a linear-elastic manner. The model considers crack initiation, growth and closure by adopting cyclic constitutive laws. A multi-variate Newton-Raphson iterative solver is used to solve the non-linear equations to ensure equilibrium and compatibility at the interface of the cracked zone. The numerical results agree well with the experiments for both loading scenarios. The model shows good predictions of the degradation of stiffness with increasing load. It also approximates the crack-mouth-opening-displacement when compared with the experimental data of the digital image correlation system. The model is found to be computationally efficient as it runs full analysis for cyclic loading in less than 2. min, and it can therefore be used within the damage detection process. © 2013 Elsevier Ltd.
Resumo:
Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressure during successive loading cycles. (C) 2000 Published by Elsevier Science Ltd. | Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressures during successive loading cycles.