941 resultados para curved crystals
Resumo:
The aim of this work is to present a formulation of the boundary element method to analyse elastic and isotropic plates with curved boundaries. In this study the plate boundary is approximated, along each element, by a second degree polynomial relation or by a circular arch, in order to better represent the real boundary. The numerical integration is performed by the self-adaptive coordinate transformation proposed by Telles. The effective shear forces are approximated by concentrated reactions applied at the boundary element nodes, according to the alternative formulation introduced by Paiva. Some examples are presented to demonstrate the better accuracy obtained with the proposed elements.
Resumo:
This study focuses on the seasonal presence of acicular crystals in the cambial zone of Citharexylum myrianthum Chain. (Verbenaceae). Specimens collected in different months from 1996 to 2000 were examined for the abundance of acicular crystals in the cambium. This information was correlated with the phenology of the species and the climate of the region. Acicular calcium oxalate crystals were found in cambial fusiform and ray cell initials, as well as in their daughter cells. An abundance of crystals was observed during periods of water deficit and leaf fall (July). Fewer crystals were found in the beginning of the wet season and bud swelling (September). When trees were flowering and the soil was wet (November and December), acicular crystals were rarely observed. During this period, acicular crystals were found in differentiating phloem and xylem parenchyma cells, in fully differentiated phloem cells, but not in fully differentiated xylem cells.
Resumo:
Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A novel setup for imaging and interferometry through reflection holography with Bi12TiPO20(BTO) sillenite photorefractive crystals is proposed. A variation of the lensless Denisiuk arrangement was developed resulting in a compact, robust and simple interferometer. A red He-Ne laser was used as light source and the holographic recording occurred by diffusion with the grating vector parallel to the crystal [0 0 1]-axis. In order to enhance the holographic image quality and reduce noise a polarizing beam splitter (PBS) was positioned at the BTO input and the crystal was tilted around the [0 0 1]-axis. This enabled the orthogonally polarized transmission and diffracted beams to be separated by the PBS, providing the holographic image only. The possibility of performing deformation and strain analysis as well as vibration measurement of small objects was demonstrated. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we demonstrated the fabrication of two-dimensional (2D) photonic crystals layers (2D-PCLs) by combining holographic recording and the evaporation of antimony-based glasses. Such materials present high refractive indices that can be tuned from 1.8 to 2.4, depending on the film composition; thus, they are interesting dielectric materials for fabrication of 2D-PCLs. The good quality of the obtained samples allowed the measurement of their PC properties through the well-defined Fano resonances that appear in the transmittance spectrum measurements at different incidence angles. The experimental results are in good agreement with the calculated band diagram for the hexagonal asymmetric structure. (C) 2008 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A sigma model action with N = 2 D = 6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond - Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 × S 3, the action reduces to one found earlier with Vafa and Witten. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Illumination of photorefractive, iron-doped lithium niobate crystals (LiNbO 3:Fe) with x-rays generates a conductivity that we determine from the speed of hologram erasure. The doping levels of the crystals and the acceleration voltage of our x-ray tube are varied. A theoretical model is presented, which describes the obtained results. A decrease of the conductivity with increasing Fe 2+ concentration can be explained by assuming that holes are the dominant charge carriers for this short-wavelength illumination.