958 resultados para curing of polymers
Resumo:
The mixing of nanoparticles with polymers to form composite materials has been applied for decades. They combine the advantages of polymers (e.g., elasticity, transparency, or dielectric properties) and inorganic nanoparticles (e.g., specific absorption of light, magneto resistance effects, chemical activity, and catalysis etc.). Nanocomposites exhibit several new characters that single-phase materials do not have. Filling the polymeric matrix with an inorganic material requires its homogeneous distribution in order to achieve the highest possible synergetic effect. To fulfill this requirement, the incompatibility between the filler and the matrix, originating from their opposite polarity, has to be resolved. A very important parameter here is the strength and irreversibility of the adsorption of the surface active compound on the inorganic material. In this work the Isothermal titration calorimetry (ITC) was applied as a method to quantify and investigate the adsorption process and binding efficiencies in organic-inorganic–hybrid-systems by determining the thermodynamic parameters (ΔH, ΔS, ΔG, KB as well as the stoichiometry n). These values provide quantification and detailed understanding of the adsorption process of surface active molecules onto inorganic particles. In this way, a direct correlation between the adsorption strength and structure of the surface active compounds can be achieved. Above all, knowledge of the adsorption mechanism in combination with the structure should facilitate a more rational design into the mainly empirically based production and optimization of nanocomposites.
Resumo:
Polycarbosilanes are a class of polymers at the interface between organic and inorganic chemistry. They are characterized by a high thermal and chemical inertness and high flexibility, especially pronounced for branched structures. Linear polycarbosilanes are well known as precursors for the preparation of SiCx ceramics. Additionally, more sophisticated architectures like dendrimers, hyperbranched polymers or block copolymers have been the subject of research for more than a decade. The scope of this work was to expand the properties and fields of application for polycarbosilane-containing structures. Thus, the work is divided in two major parts. The first part covers the synthesis and characterization of hyperbranched polycarbosilanes containing organometallic moieties. Hyperbranched poly-carbosilanes were synthesized using hydrosilylation of diallylmethylsilane and methyldiundecenylsilane. The degree of branching for polydiallymethylsilane was determined using standard 1H-NMR spectroscopy. The functional building blocks ferrocenyldimethylsilane and diferrocenylmethylsilane were synthesized which contain an isolated ferrocene unit or two ferrocenes bridged by silicon, respectively. Hyperbranched polycarbosilanes functionalized with ferrocenyl moieties were synthesized by modification of preformed polymers or by copolymerization of AB2 carbosilane monomers with AX-type ferrocenylsilanes. Polymers with Mn = 2500-9000g/mol and ferrocene contents of up to 67wt% were obtained. Electrochemical characterization by cyclic voltammetry revealed that polymers functionalized with isolated ferrocene units showed a single reversible oxidation wave, while voltammograms for polymers functionalized with diferrocenyl silane exhibited two well-separated reversible oxidation-reduction waves. This shows that the polymer bound ferrocenes bridged by silicon are electronically communicating and thus oxidation of the first ferrocene shifts the oxidation potential for the adjacent one. The polymers were utilized successfully for the preparation of modified electrodes with persistent and reproducible electrochemical response in organic solvents as well as in aqueous solution. The presented work has proven that ferrocenyl-functionalized hyperbranched polymers exhibit similar electrochemical properties as the analogous dendrimers. In a further approach it was shown that hyperbranched polymers containing organometallic moieties can be synthesized by polymerization of a new ferrocene-containing AB2 monomer - diallylferrocenylsilane. The second part of this work is dedicated to the preparation of core-functional hyperbranched polycarbosilanes. Low molecular weight ambifunctional molecules were synthesized that contain double bonds for the attachment of a polycarbosilane polymer as well as a second functionality available for further reaction and modification. Reactive vinyl groups in the core molecule allow an efficient attachment of hyperbranched polycarbosilane which was proven by MALDI-ToF and GPC. In combination with slow monomer addition techniques molecular weight and polydispersity of the polymers were controlled successfully. Core-functional polymers were characterized by NMR-spectroscopy, MALDI-ToF and GPC. Polymers with polydispersities <2 and molecular weights up to 5300g/mol were obtained. Transformation of the double bonds of the carbosilane was demonstrated with various silanes using hydrosilylation reaction or hydrogenation. Additionally, the core-functionality was varied resulting in polymers with bromo-, phthalimide-, amine- or azide moieties. Thus, a versatile synthetic strategy was developed that allows the synthesis of tailor-made polymers.A promising approach is the application of the polymer building blocks in copolymer synthesis. Bisglycidolization of amine-functional polycarbosilanes produces macro-initiators that are suitable for the multibranching-ring opening polymerization of glycidol. This experiments lead to the first example of hyperbranched-hyperbranched amphiphilic block copolymers, hb-PG-b-hb-PCS. Furthermore, the implementation of copper-catalyzed cycloaddition between azide-functional polycarbosilane and alkyne-functional poly(ethoxyethyl glycidylether) resulted in linear-hyperbranched block copolymers. The facile removal of acetal protecting groups provided convenient access to lin-PG-b-hb-PCS.
Resumo:
This thesis aims at connecting structural and functional changes of complex soft matter systems due to external stimuli with non-covalent molecular interaction profiles. It addresses the problem of elucidating non-covalent forces as structuring principle of mainly polymer-based systems in solution. The structuring principles of a wide variety of complex soft matter types are analyzed. In many cases this is done by exploring conformational changes upon the exertion of external stimuli. The central question throughout this thesis is how a certain non-covalent interaction profile leads to solution condition-dependent structuring of a polymeric system.rnTo answer this question, electron paramagnetic resonance (EPR) spectroscopy is chosen as the main experimental method for the investigation of the structure principles of polymers. With EPR one detects only the local surroundings or environments of molecules that carry an unpaired electron. Non-covalent forces are normally effective on length scales of a few nanometers and below. Thus, EPR is excellently suited for their investigations. It allows for detection of interactions on length scales ranging from approx. 0.1 nm up to 10 nm. However, restriction to only one experimental technique likely leads to only incomplete pictures of complex systems. Therefore, the presented studies are frequently augmented with further experimental and computational methods in order to yield more comprehensive descriptions of the systems chosen for investigation.rnElectrostatic correlation effects in non-covalent interaction profiles as structuring principles in colloid-like ionic clusters and DNA condensation are investigated first. Building on this it is shown how electrostatic structuring principles can be combined with hydrophobic ones, at the example of host-guest interactions in so-called dendronized polymers (denpols).rnSubsequently, the focus is shifted from electrostatics in dendronized polymers to thermoresponsive alkylene oxide-based materials, whose structuring principles are based on hydrogen bonds and counteracting hydrophobic interactions. The collapse mechanism in dependence of hydrophilic-hydrophobic balance and topology of these polymers is elucidated. Complementarily the temperature-dependent phase behavior of elastin-like polypeptides (ELPs) is investigated. ELPs are the first (and so far only) class of compounds that is shown to feature a first-order inverse phase transition on nanoscopic length scales.rnFinally, this thesis addresses complex biological systems, namely intrinsically disordered proteins (IDPs). It is shown that the conformational space of the IDPs Osteopontin (OPN), a cytokine involved in metastasis of several kinds of cancer, and BASP1 (brain acid soluble protein one), a protein associated with neurite outgrowth, is governed by a subtle interplay between electrostatic forces, hydrophobic interaction, system entropy and hydrogen bonds. Such, IDPs can even sample cooperatively folded structures, which have so far only been associated with globular proteins.
Resumo:
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von Polymeren mit redox-funktionalen Phenothiazin-Seitenketten. Phenothiazin und seine Derivate sind kleine Redoxeinheiten, deren reversibles Redoxverhalten mit electrochromen Eigenschaften verbunden ist. Das besondere an Phenothiazine ist die Bildung von stabilen Radikalkationen im oxidierten Zustand. Daher können Phenothiazine als bistabile Moleküle agieren und zwischen zwei stabilen Redoxzuständen wechseln. Dieser Schaltprozess geht gleichzeitig mit einer Farbveränderung an her.rnrnIm Rahmen dieser Arbeit wird die Synthese neuartiger Phenothiazin-Polymere mittels radikalischer Polymerisation beschrieben. Phenothiazin-Derivate wurden kovalent an aliphatischen und aromatischen Polymerketten gebunden. Dies erfolgte über zwei unterschiedlichen synthetischen Routen. Die erste Route beinhaltet den Einsatz von Vinyl-Monomeren mit Phenothiazin Funktionalität zur direkten Polymerisation. Die zweite Route verwendet Amin modifizierte Phenothiazin-Derivate zur Funktionalisierung von Polymeren mit Aktivester-Seitenketten in einer polymeranalogen Reaktion. rnrnPolymere mit redox-funktionalen Phenothiazin-Seitenketten sind aufgrund ihrer Elektron-Donor-Eigenschaften geeignete Kandidaten für die Verwendung als Kathodenmaterialien. Zur Überprüfung ihrer Eignung wurden Phenothiazin-Polymere als Elektrodenmaterialien in Lithium-Batteriezellen eingesetzt. Die verwendeten Polymere wiesen gute Kapazitätswerte von circa 50-90 Ah/kg sowie schnelle Aufladezeiten in der Batteriezelle auf. Besonders die Aufladezeiten sind 5-10 mal höher als konventionelle Lithium-Batterien. Im Hinblick auf Anzahl der Lade- und Entladezyklen, erzielten die Polymere gute Werte in den Langzeit-Stabilitätstests. Insgesamt überstehen die Polymere 500 Ladezyklen mit geringen Veränderungen der Anfangswerte bezüglich Ladezeiten und -kapazitäten. Die Langzeit-Stabilität hängt unmittelbar mit der Radikalstabilität zusammen. Eine Stabilisierung der Radikalkationen gelang durch die Verlängerung der Seitenkette am Stickstoffatom des Phenothiazins und der Polymerhauptkette. Eine derartige Alkyl-Substitution erhöht die Radikalstabilität durch verstärkte Wechselwirkung mit dem aromatischen Ring und verbessert somit die Batterieleistung hinsichtlich der Stabilität gegenüber Lade- und Entladezyklen. rnrnDes Weiteren wurde die praktische Anwendung von bistabilen Phenothiazin-Polymeren als Speichermedium für hohe Datendichten untersucht. Dazu wurden dünne Filme des Polymers auf leitfähigen Substraten elektrochemisch oxidiert. Die elektrochemische Oxidation erfolgte mittels Rasterkraftmikroskopie in Kombination mit leitfähigen Mikroskopspitzen. Mittels dieser Technik gelang es, die Oberfläche des Polymers im nanoskaligen Bereich zu oxidieren und somit die lokale Leitfähigkeit zu verändern. Damit konnten unterschiedlich große Muster lithographisch beschrieben und aufgrund der Veränderung ihrer Leitfähigkeit detektiert werden. Der Schreibprozess führte nur zu einer Veränderung der lokalen Leitfähigkeit ohne die topographische Beschaffenheit des Polymerfilms zu beeinflussen. Außerdem erwiesen sich die Muster als besonders stabil sowohl mechanisch als auch über die Zeit.rnrnZum Schluss wurden neue Synthesestrategien entwickelt um mechanisch stabile als auch redox-funktionale Oberflächen zu produzieren. Mit Hilfe der oberflächen-initiierten Atomtransfer-Radikalpolymerisation wurden gepfropfte Polymerbürsten mit redox-funktionalen Phenothiazin-Seitenketten hergestellt und mittels Röntgenmethoden und Rasterkraftmikroskopie analysiert. Eine der Synthesestrategien geht von gepfropften Aktivesterbürsten aus, die anschließend in einem nachfolgenden Schritt mit redox-funktionalen Gruppen modifiziert werden können. Diese Vorgehensweise ist besonders vielversprechend und erlaubt es unterschiedliche funktionelle Gruppen an den Aktivesterbürsten zu verankern. Damit können durch Verwendung von vernetzenden Gruppen neben den Redoxeigenschaften, die mechanische Stabilität solcher Polymerfilme optimiert werden. rn rn
Resumo:
Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.
Resumo:
Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.
Resumo:
The blending of common polymers allows for the rapid and facile synthesis of new materials with highly tunable properties at a fraction of the costs of new monomer development and synthesis. Most blends of polymers, however, are completely immiscible and separate into distinct phases with minimal phase interaction, severelydegrading the performance of the material. Cross-phase interactions and property enhancement can be achieved with these blends through reactive processing or compatibilizer addition. A new class of blend compatibilization relies on the mechanochemical reactions between polymer chains via solid-state, high energy processing. Two contrasting mechanochemical processing techniques are explored in this thesis: cryogenic milling and solid-state shear pulverization (SSSP). Cryogenic milling is a batch process where a milling rod rapidly impacts the blend sample while submerged within a bath of liquid nitrogen. In contrast, SSSP is a continuous process where blend components are subjected to high shear and compressive forces while progressing down a chilled twin-screw barrel. In the cryogenic milling study, through the application of a synthesized labeledpolymer, in situ formation of copolymers was observed for the first time. The microstructures of polystyrene/high-density polyethylene (PS/HDPE) blends fabricated via cryomilling followed by intimate melt-state mixing and static annealing were found to be morphologically stable over time. PS/HDPE blends fabricated via SSSP also showed compatibilization by way of ideal blend morphology through growth mechanisms with slightly different behavior compared to the cryomilled blends. The new Bucknell University SSSP instrument was carefully analyzed and optimized to produce compatibilized polymer blends through a full-factorial experiment. Finally, blends of varying levels of compatibilization were subjected to common material tests to determine alternative means of measuring and quantifying compatibilization,
Resumo:
Cement augmentation using PMMA cement is known as an efficient treatment for osteoporotic vertebral compression fractures with a rapid release of pain in most patients and prevention of an ongoing kyphotic deformity of the vertebrae treated. However, after a vertebroplasty there is no chance to restore vertebral height. Using the technique of kyphoplasty a certain restoration of vertebral body height can be achieved. But there is a limitation of recovery due to loss of correction when deflating the kyphoplastic ballon and before injecting the cement. In addition, the instruments used are quite expensive. Lordoplasty is another technique to restore kyphosis by indirect fracture reduction as it is used with an internal fixateur. The fractured and the adjacent vertebrae are instrumented with bone cannulas bipediculary and the adjacent vertebrae are augmentated with cement. After curing of the cement the fractured vertebra is reduced by applying a lordotic moment via the cannulas. While maintaining the pretension the fractured vertebra is reinforced. We performed a prospective trial of 26 patients with a lordoplastic procedure. There was a pain relief of about 87% and a significant decrease in VAS value from 7.3 to 1.9. Due to lordoplasty there was a significant and permanent correction in vertebral and segmental kyphotic angle about 15.2 degrees and 10.0 degrees , respectively and also a significant restoration in anterior and mid vertebral height. Lordoplasty is a minimal invasive technique to restore vertebral body height. An immediate relief of pain is achieved in most patients. The procedure is safe and cost effective.
Resumo:
Polymers are typically electrically and thermally insulating materials. The electrical and thermal conductivities of polymers can be increased by the addition conductive fillers such as carbons. Once the polymer composites have been made electrically and thermally conductive, they can be used in applications where these conductivities are desired such as electromagnetic shielding and static dissipation. In this project, three carbon nanomaterials are added to polycarbonate to enhance the electrical and thermal conductivity of the resulting composite. Hyperion Catalysis FIBRILs carbon nanotubes were added to a maximum loading of 8 wt%. Ketjenblack EC-600 JD carbon black was added to a maximum loading of 10 wt%. XG Sciences xGnP™ graphene nanoplatelets were added to a maximum loading of 15 wt%. These three materials have drastically different morphologies and will have varying effects on the various properties of polycarbonate composites. It was determined that carbon nanotubes have the largest effect on electrical conductivity with an 8 wt% carbon nanotube in polycarbonate composite having an electrical conductivity of 0.128 S/cm (from a pure polycarbonate value of 10-17 S/cm). Carbon black has the next largest effect with an 8 wt% carbon black in polycarbonate composite having an electrical conductivity of 0.008 S/cm. Graphene nanoplatelets have the least effect with an 8 wt% graphene nanoplatelet in polycarbonate having an electrical conductivity of 2.53 x 10-8 S/cm. Graphene nanoplatelets show a significantly higher effect on increasing thermal conductivity than either carbon nanotubes or carbon black. Mechanically, all three materials have similar effects with graphene nanoplatelets being somewhat more effective at increasing the tensile modulus of the composite than the other fillers. Carbon black and graphene nanoplatelets show standard carbon-filler rheology where the addition of filler increases the viscosity of the resulting composite. Carbon nanotubes, on the other hand, show an unexpected rheology. As carbon nanotubes are added to polycarbonate the viscosity of the composite is reduced below that of the original polycarbonate. It was seen that the addition of carbon nanotubes offsets the increased viscosity from a second filler, such as carbon black or graphene nanoplatelets.
Resumo:
A comprehensive knowledge of cell wallstructure and function throughout the plant kingdom is essential to understanding cell wall evolution. The fundamental understanding of the charophycean green algal cell wall is broadening. The similarities and differences that exist between land plant and algal cell walls provide opportunities to understand plant evolution. A variety of polymers previously associated with higher plants were discovered in the charophycean green algae (CGA), including homogalacturonans, cross-linking glycans, arabinogalactan protein, β-glucans, and cellulose. The cellulose content of CGA cell walls ranged from 6% to 43%, with the higher valuescomparable to that found in the primary cell wall of land plants (20-30%). (1,3)β-glucans were found in the unicellular Chlorokybus atmophyticus, Penium margaritaceum, and Cosmarium turpini, the unbranched filamentous Klebsormidium flaccidum, and the multicellular Chara corallina. The discovery of homogalacturonan in Penium margaritaceum representsthe first confirmation of land plant-type pectinsin desmids and the second rigorous characterization of a pectin polymer from the charophycean algae. Homogalacturonan was also indicated from the basal species Chlorokybus atmophyticus and Klebsormidium flaccidum. There is evidence of branched pectins in Cosmarium turpini and linkage analysis suggests the presence of type I rhamnogalacturonan (RGI). Cross-linking β-glucans are associated with cellulose microfibrils during land plant cell growth, and were found in the cell wall of CGA. The evidence of mixed-linkage glucan (MLG) in the 11 charophytesis both suprising and significant given that MLG was once thought to be specific to some grasses. The organization and structure of Cosmarium turpini and Chara corallina MLG was found to be similar to that of Equisetumspp., whereas the basal species of the CGA, Chlorokybus atmophyticus and Klebsormidium flaccidum, have unique organization of alternating of 3- and 4-linkages. The significance of this result on the evolution of the MLG synthetic pathway has yet to be determined. The extracellular matrix (ECM) of Chlorokybus atmophyticus, Klebsormidium flaccidum, and Spirogyra spp. exhibits significant biochemical diversity, ranging from distinct “land plant” polymers to polysaccharides unique to these algae. The neutral sugar composition of Chlorokybus atmophyticus hot water extract and Spirogyra extracellular polymeric substance (EPS), combined with antibody labeling results, revealed the distinct possibility of an arabinogalactan protein in these organisms. Polysaccharide analysis of Zygnematales (desmid) EPS, indicated a probable range of different EPS backbones and substitution patterns upon the core portions of the molecules. Desmid EPS is predominately composed of a complex matrix of branched, uronic acid containing polysaccharides with ester sulfate substitutions and, as such, has an almost infinite capacity for various hydrogen bonding, hydrophobic interaction and ionic cross-bridging motifs, which characterize their unique function in biofilms. My observations support the hypothesis that members of the CGA represent the phylogenetic line that gave rise to vascular plants and that the primary cell wall of vascular plants many have evolved directly from structures typical of the cell wall of filamentous green algae found in the charophycean green algae.
Resumo:
Aim: To evaluate the effects of salivary contamination and decontamination on bond strength of two one-step adhesives to primary and permanent dentin. Methods: Dentin specimens were prepared from extracted primary and permanent molars (210 of each) and were distributed to seven groups (n=15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light-curing of the adhesives followed either by air-drying, by rinsing with water and air-drying, or by rinsing with water, air-drying and reapplication of the adhesives. Resin composite was applied and the specimens were stored for 24h (37°C, 100% humidity). Then, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA and Wilcoxon rank sum tests. Results: Saliva contamination reduced SBS of Xeno V+, the reduction being more pronounced when contamination occurred before light-curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Conclusion: Saliva contamination reduced SBS of Xeno V+, but not of Scotchbond Universal. SBS was restored when contaminated dentin was rinsed with water and air-dried followed by reapplication of the adhesive.
Resumo:
Purpose: To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Materials and Methods: Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Results: Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Conclusion: Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.
Resumo:
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.
Resumo:
Se describen las variaciones de temperaturas y de tensiones durante la construcción de presas de hormigón compactado. The curing of concrete is an exothermic process. The heat of hydration generated induces temperature increases in the concrete, which will disappear in the long term by heat conduction in the concrete mass and thermal exchanges with the environment. The problem is of particularly interest for large concrete masses, as is the case of dams, because the time involved in the heat diffusion process grows with the square of the dimensions and a hotter dam interior implies the possibility of cracking the exposed surfaces of the dam. The Cuira dam, currently being built in Venezuela using roller compacted concrete, is a 134 m high, arch-gravity dam. In support of the design, different strategies were analysed, including various combinations of cooling of the water and the aggregate in order to achieve acceptable results. The calculations were conducted with Abaqus, taking into account all the necessary mechanical and thermal characteristics, as well as the relevant non-linearities. The analyses led to the conclusion that no cooling was required, even taking into account the stress state imposed by an early and rapid filling of the reservoir.
Resumo:
In order to reduce costs and time while improving quality, durability and sustainability in structural concrete constructions, a widely used material nowadays, special care must be taken in some crucial phases of the project and execution, including the structure design and calculation, the dosage, dumping and curing of concrete: another important aspect is the proper design and execution of assembly plans and construction details. The framework, a name designating the whole reinforcement bars cage already assembled as shown in the drawings, can be made up of several components and implies higher or lower industrialization degree. The framework costs constitute about one third of the price per cubic meter placed in concrete works. The best solutions from all points of view are clearly those involving an easier processing to achieve the same goal, and consequently carrying a high degree of industrialization, meaning quality and safety in the work. This thesis aims to provide an indepth analysis of a relatively new type of anchoring by plate known as headed reinforcement bars, which can potentially replace standard or L-shaped hooks, improving the cleaning of construction details and enabling a faster, more flexible, and therefore a more economical assembly. A literature review on the topic and an overview of typical applications is provided, followed by some examples of specific applications in real projects. Since a strict theoretical formulation used to provide the design plate dimensions has not yet been put forward, an equation is proposed for the side-face blowout strength of the anchorage, based on the capacity of concrete to carry concentrated loads in cases in which no transverse reinforcement is provided. The correlation of the calculated ultimate load with experimental results available in the literature is given. Besides, the proposed formulation can be expanded to cases in which a certain development length is available: using a software for nonlinear finite element analysis oriented to the study of reinforced concrete, numerical tests on the bond-bearing interaction are performed. The thesis ends with a testing of eight corner joints subjected to a closing moment, held in the Structures Laboratory of the Polytechnic University of Madrid, aiming to check whether the design of such plates as stated is adequate for these elements and whether an element with plate-anchored reinforcement is equivalent to one with a traditional construction detail.