820 resultados para contours
Resumo:
Basin-scale heterogeneity contains information about the traces of the past sedimentary cycle and tectonic process, and has been a major concern to geophysicists because of its importance in resource exploration and development. In this paper, the sonic data of 30 wells of Sulige field are used to inverse the power-law spectra slope and correlation length which are measures of the heterogeneity of the velocity of the log using fractal and statistic correlation methods. By taking the heterogeneity parameters of different wells interpolated, we get power law spectra slope and correlation length contours reflecting the stratum heterogeneity. Then using correlation and gradient, we inverse the transverse heterogeneity of Sulige field. Reservior-scale heterogeneity influnce the distribution of remaining oil and hydrocarbon accumulation. Using wavelet modulus maximum method to divide the sedimentary cycle using Gr data, therefore we can calculate the heterogeneity parameter in each layer of each log. Then we get the heterogeneity distribution of each layer of Sulige field. Finally, we analyze the relation between the signal sigularity and the strata heterogeneity, and get two different sigularity profiles in different areas.
Resumo:
Firstly, prosodic boundaries of 1991 common sentences were labeled based on speech perception experiment, relation between prosodic structure and syntactic structure was examined after immediate constituent analysis, an example of prosodic phrasing from text sentences was provided using CART. Then, using designed sentences, phenomena of downstep and declination in pitch downtrend of Chinese declarative sentences were examined, commonness and speciality of Chinese intonation were discussed. The main results of the study are: 1 The distribution patterns of prosodic phrase boundaries for different syntactic structures are different, and there is great freedom in prosodic chunking. The relation between syntactic structure and prosodic structure can only be discussed in statistical sense. 2 Besides of syntactic relation, the second most important factor which influences prosodic phrase boundaries is length. The distances to the front boundary and the back boundary are more important than the lengths of the left syntactic contituent and the right one. In our corpus, the length distributions of prosodic phrases are 5±3 syllables. 3 Automatic downstep can lower intonation linearly, but is affected by stress easily. Non-automatic downstep lowers the higher part of pitch contours and has no effect on the lower one of the intonation. 4 The downtrend reason of low point is declination. The extent of declination relates to not only tones of low points, but also their positions in prosodic words, the baselines decline much faster when low point are in the initial position of a prosodic word. In long sentences, the baselines of prosodic phrases are the basic declination units, and the whole declination pattern of a sentence is related to syntactic relations between two neighboring prosodic phrases.
Resumo:
Crowding, generally defined as the deleterious influence of nearby contours on visual discrimination, is ubiquitous in spatial vision. Specifically, long-range effects of non-overlapping distracters can alter the appearance of an object, making it unrecognizable. Theories in many domains, including vision computation and high-level attention, have been proposed to account for crowding. However, neither compulsory averaging model nor insufficient spatial esolution of attention provides an adequate explanation for crowding. The present study examined the effects of perceptual organization on crowding. We hypothesize that target-distractor segmentation in crowding is analogous to figure-ground segregation in Gestalt. When distractors can be grouped as a whole or when they are similar to each other but different from the target, the target can be distinguished from distractors. However, grouping target and distractors together by Gestalt principles may interfere with target-distractor separation. Six experiments were carried out to assess our theory. In experiments 1, 2, and 3, we manipulated the similarity between target and distractor as well as the configuration of distractors to investigate the effects of stimuli-driven grouping on target-distractor segmentation. In experiments 4, 5, and 6, we focused on the interaction between bottom-up and top-down processes of grouping, and their influences on target-distractor segmentation. Our results demonstrated that: (a) when distractors were similar to each other but different from target, crowding was eased; (b) when distractors formed a subjective contour or were placed regularly, crowding was also reduced; (c) both bottom-up and top-down processes could influence target-distractor grouping, mediating the effects of crowding. These results support our hypothesis that the figure-ground segregation and target-distractor segmentation in crowding may share similar processes. The present study not only provides a novel explanation for crowding, but also examines the processing bottleneck in object recognition. These findings have significant implications on computer vision and interface design as well as on clinical practice in amblyopia and dyslexia.
Resumo:
Certain salient structures in images attract our immediate attention without requiring a systematic scan. We present a method for computing saliency by a simple iterative scheme, using a uniform network of locally connected processing elements. The network uses an optimization approach to produce a "saliency map," a representation of the image emphasizing salient locations. The main properties of the network are: (i) the computations are simple and local, (ii) globally salient structures emerge with a small number of iterations, and (iii) as a by-product of the computations, contours are smoothed and gaps are filled in.
Resumo:
The recognition of objects with smooth bounding surfaces from their contour images is considerably more complicated than that of objects with sharp edges, since in the former case the set of object points that generates the silhouette contours changes from one view to another. The "curvature method", developed by Basri and Ullman [1988], provides a method to approximate the appearance of such objects from different viewpoints. In this paper we analyze the curvature method. We apply the method to ellipsoidal objects and compute analytically the error obtained for different rotations of the objects. The error depends on the exact shape of the ellipsoid (namely, the relative lengths of its axes), and it increases a sthe ellipsoid becomes "deep" (elongated in the Z-direction). We show that the errors are usually small, and that, in general, a small number of models is required to predict the appearance of an ellipsoid from all possible views. Finally, we show experimentally that the curvature method applies as well to objects with hyperbolic surface patches.
Resumo:
We present an image-based approach to infer 3D structure parameters using a probabilistic "shape+structure'' model. The 3D shape of a class of objects may be represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes can then be estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We augment the shape model to incorporate structural features of interest; novel examples with missing structure parameters may then be reconstructed to obtain estimates of these parameters. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a dataset of thousands of pedestrian images generated from a synthetic model, we can perform accurate inference of the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
Resumo:
Weighted graph matching is a good way to align a pair of shapes represented by a set of descriptive local features; the set of correspondences produced by the minimum cost of matching features from one shape to the features of the other often reveals how similar the two shapes are. However, due to the complexity of computing the exact minimum cost matching, previous algorithms could only run efficiently when using a limited number of features per shape, and could not scale to perform retrievals from large databases. We present a contour matching algorithm that quickly computes the minimum weight matching between sets of descriptive local features using a recently introduced low-distortion embedding of the Earth Mover's Distance (EMD) into a normed space. Given a novel embedded contour, the nearest neighbors in a database of embedded contours are retrieved in sublinear time via approximate nearest neighbors search. We demonstrate our shape matching method on databases of 10,000 images of human figures and 60,000 images of handwritten digits.
Resumo:
Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
Resumo:
For applications involving the control of moving vehicles, the recovery of relative motion between a camera and its environment is of high utility. This thesis describes the design and testing of a real-time analog VLSI chip which estimates the focus of expansion (FOE) from measured time-varying images. Our approach assumes a camera moving through a fixed world with translational velocity; the FOE is the projection of the translation vector onto the image plane. This location is the point towards which the camera is moving, and other points appear to be expanding outward from. By way of the camera imaging parameters, the location of the FOE gives the direction of 3-D translation. The algorithm we use for estimating the FOE minimizes the sum of squares of the differences at every pixel between the observed time variation of brightness and the predicted variation given the assumed position of the FOE. This minimization is not straightforward, because the relationship between the brightness derivatives depends on the unknown distance to the surface being imaged. However, image points where brightness is instantaneously constant play a critical role. Ideally, the FOE would be at the intersection of the tangents to the iso-brightness contours at these "stationary" points. In practice, brightness derivatives are hard to estimate accurately given that the image is quite noisy. Reliable results can nevertheless be obtained if the image contains many stationary points and the point is found that minimizes the sum of squares of the perpendicular distances from the tangents at the stationary points. The FOE chip calculates the gradient of this least-squares minimization sum, and the estimation is performed by closing a feedback loop around it. The chip has been implemented using an embedded CCD imager for image acquisition and a row-parallel processing scheme. A 64 x 64 version was fabricated in a 2um CCD/ BiCMOS process through MOSIS with a design goal of 200 mW of on-chip power, a top frame rate of 1000 frames/second, and a basic accuracy of 5%. A complete experimental system which estimates the FOE in real time using real motion and image scenes is demonstrated.
Resumo:
How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.
Resumo:
The problem of using image contours to infer the shapes and orientations of surfaces is treated as a problem of statistical estimation. The basis for solving this problem lies in an understanding of the geometry of contour formation, coupled with simple statistical models of the contour generating process. This approach is first applied to the special case of surfaces known to be planar. The distortion of contour shape imposed by projection is treated as a signal to be estimated, and variations of non-projective origin are treated as noise. The resulting method is then extended to the estimation of curved surfaces, and applied successfully to natural images. Next, the geometric treatment is further extended by relating countour curvature to surface curvature, using cast shadows as a model for contour generation. This geometric relation, combined with a statistical model, provides a measure of goodness-of-fit between a surface and an image contour. The goodness-of-fit measure is applied to the problem of establishing registration between an image and a surface model. Finally, the statistical estimation strategy is experimentally compared to human perception of orientation: human observers' judgements of tilt correspond closely to the estimates produced by the planar strategy.
Resumo:
The visual analysis of surface shape from texture and surface contour is treated within a computational framework. The aim of this study is to determine valid constraints that are sufficient to allow surface orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture and of surface contours.
Resumo:
This thesis explores how to represent image texture in order to obtain information about the geometry and structure of surfaces, with particular emphasis on locating surface discontinuities. Theoretical and psychophysical results lead to the following conclusions for the representation of image texture: (1) A texture edge primitive is needed to identify texture change contours, which are formed by an abrupt change in the 2-D organization of similar items in an image. The texture edge can be used for locating discontinuities in surface structure and surface geometry and for establishing motion correspondence. (2) Abrupt changes in attributes that vary with changing surface geometry ??ientation, density, length, and width ??ould be used to identify discontinuities in surface geometry and surface structure. (3) Texture tokens are needed to separate the effects of different physical processes operating on a surface. They represent the local structure of the image texture. Their spatial variation can be used in the detection of texture discontinuities and texture gradients, and their temporal variation may be used for establishing motion correspondence. What precisely constitutes the texture tokens is unknown; it appears, however, that the intensity changes alone will not suffice, but local groupings of them may. (4) The above primitives need to be assigned rapidly over a large range in an image.
Resumo:
Chemical and biological processes, such as dissolution in gypsiferous sands and biodegradation in waste refuse, result in mass or particle loss, which in turn lead to changes in solid and void phase volumes and grading. Data on phase volume and grading changes have been obtained from oedometric dissolution tests on sand–salt mixtures. Phase volume changes are defined by a (dissolution-induced) void volume change parameter (Λ). Grading changes are interpreted using grading entropy coordinates, which allow a grading curve to be depicted as a single data point and changes in grading as a vector quantity rather than a family of distribution curves. By combining Λ contours with pre- to post-dissolution grading entropy coordinate paths, an innovative interpretation of the volumetric consequences of particle loss is obtained. Paths associated with small soluble particles, the loss of which triggers relatively little settlement but large increase in void ratio, track parallel to the Λ contours. Paths associated with the loss of larger particles, which can destabilise the sand skeleton, tend to track across the Λ contours.
Resumo:
The work examines the change involving the Church in Tunisia from the period of the Protectorate to the present through the fundamental moments of independence (1956) and the signing of the ‘Modus vivendi’ (1964). In the first structure of the “modern” Church, a fundamental role was played by the complex figure of the French Cardinal Charles-Allemand Lavigerie who, while giving strong impulse to setting up disinterested charitable social initiatives by the congregations (Pères Blancs, Soeurs Blanches and others), also represented the ideal of the ‘evangelizing’ (as well as colonial) Church which, despite its declared will to avoid proselytism, almost inevitably tended to slip into it. During the French Protectorate (1881-1956) the ecclesiastic institution concentrated strongly on itself, with little heed for the sensitivity of its host population, and developed its activities as if it were in a European country. From the social standpoint, the Church was mostly involved in teaching, which followed the French model, and health facilities. In the Church only the Pères Blancs missionaries were sincerely committed to promoting awareness of the local context and dialogue with the Muslims. The Catholic clergy in the country linked its religious activity close to the policy of the Protectorate, in the hope of succeeding in returning to the ancient “greatness of the African Church”, as the Eucharistic Congress in Carthage in 1930 made quite clear. The Congress itself planted the first seed in the twentyfive- year struggle that led the Tunisian population to independence in 1956 and the founding of the Republic in 1957. The conquest of independence and the ‘Modus vivendi’ marked a profound change in the situation and led to an inversion of roles: the Catholic community was given the right to exist only on the condition that it should not interfere in Tunisian society. The political project of Bourguiba, who led the Republic from 1957 to 1987, aimed to create a strongly egalitarian society, with a separation between political and religious powers. In particular, in referring to the Church, he appeared as a secularist with no hostility towards the Catholics who were, however, considered as “cooperators”, welcome so long as they were willing to place their skills at the service of the construction of the state. So, in the catholic Community was a tension between the will of being on the side of the country and that of conserving a certain distance from it and not being an integral part of it. In this process of reflection, the role of the Second Vatican Council was fundamental: it spread the idea of a Church open to the world and the other religions, in particular to Islam: the teaching of the Council led the congregations present in the country to accept the new condition. This new Church that emerged from the Council saw some important events in the process of “living together”, of “cultural mixing” and the search for a common ground between different realities. The almost contemporary arrival of Arab bishops raised awareness among the Tunisians of the existence of Christian Arabs and, at the same time, the Catholic community began considering their faith in a different way. In the last twenty years the situation has continued to change. Side by side with the priests present for decades or even those born there, some new congregations have begun to operate, albeit in small numbers: they have certainly revitalized the community of the faithful, but they sometimes appear more devoted to service “within” the Church, than to services for the population, and are thus characterized by exterior manifestations of their religion. This sort of presence has made it possible for Bourguiba's successor, Ben Ali (president from 1987 to 2011), to practice forms of tolerance even more clearly, but always limited to formal relations; the Tunisians are still far from having a real understanding of the Catholic reality, with certain exceptions connected to relations on a personal and not structured plane, as was the case in the previous period. The arrival of a good number of young people from sub-Saharan Africa, most of all students, belonging to the JCAT, and personnel of the BAD has “Africanized” the Church in Tunisia and has brought about an increase in Christians' exterior manifestations; but this is a visibility that is not blatant but discreet, with the implicit risk of the Church continuing to be perceived as a sort of exterior body, alien to the country; nor can we say, lacking proper documentation, how it will be possible to build a bridge between different cultures through the “accompaniment” of Christian wives of Tunisians. Today, the Church is living in a country that has less and less need of it; its presence, in the schools and in health facilities, is extremely reduced. And also in other sectors of social commitment, such as care for the disabled, the number of clergymen involved is quite small. The ‘revolution’ in 2011 and the later developments up to the present have brought about another socio-political change, characterized by a climate of greater freedom, but with as yet undefinable contours. This change in the political climate will inevitable have consequences in Tunisia’s approach to religious and cultural minorities, but it is far too soon to discuss this on the historical and scientific planes.