962 resultados para continuous process, fermentation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents empirical correlations to predict the density, specific heat, thermal conductivity and rheological power-law parameters of liquid egg yolk over a temperature range compatible with its industrial thermal processing (0-61 C). Moreover, a mathematical model for a pasteurizer that takes into account the spatial variation of the overall heat transfer coefficient throughout the plate heat exchanger is presented, as are two of its simplified forms. The obtained correlations of thermophysical properties are applied for the simulation of the egg yolk pasteurization, and the obtained temperature profiles are used for evaluating the extent of thermal inactivation. A detailed simulation example shows that there is a considerable deviation between the designed level of heat treatment and that this is predicted through process simulation. It is shown that a reliable mathematical model, combined with specialized thermophysical property correlations, provide a more accurate design of the pasteurization equipment that ensures effective inactivation, while preserving nutritional and sensorial characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 μL of digested samples into the pretreated graphite platform with co-injection of 5 μL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 μg L -1 Cd and 0.7 μg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic) acids from PFAD-Palm Fatty Acids Distillates was used as a case study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: In Brazil part of the production of ginger is of inadequate quality for export. The production of spirit from felt-over rhizomes is an alternative of great interest to producers of these rhizomes. Aim: Aiming to increase the value of felt-over rhizomes, this work aimed to study the use of ginger as a raw material for alcoholic beverage production. It was evaluated the effect of fermentation conditions on the components of fermented alcoholic, as well as, the quality of alcoholic distilled beverage of ginger. Methods: Dehydrated ginger passed by enzymatic hydrolysis-saccharification processes. The hydrolysate obtained was analyzed for sugar profile in HPLC. The alcoholic fermentation process followed the central composite rotational design for three factors: fermentation temperature (23 to 37ºC), time of fermentation (17 to 33 h) and concentration of inoculum (0.22 to 3.00%). The fermented alcoholic obtained was analyzed in HPLC for the contents of ethanol, methanol, glycerol and residual sugars. The distillated alcoholic beverage of ginger was analyzed for ethanol, methanol, acetaldehyde, ethyl acetate and higher alcohols in the gas chromatography (GC). In addition, copper content and acidity were analyzed Results: Sugar profile of the ginger hydrolysate revealed the presence of 77.8% of glucose. Data analysis of fermentation process showed influence of temperature on ethanol and methanol content of the fermented alcoholic of ginger. Time of fermentation had effect on glycerol content. All parameters of process had influence on residual sugars contents. The HPLC analysis has shown presence of methanol, ethyl acetate, aldehyde, acids, higher alcohols and esters in distilled alcoholic beverage of ginger. Conclusion: Fermented alcoholic of ginger with higher levels of ethanol can be obtained under the conditions of 1.5% w/w of inoculum, 30°C of temperature and 24 hours of fermentation time. In this condition of fermentation process the beverage of ginger had good quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of the first part of the research activity was to develop an aerobic cometabolic process in packed bed reactors (PBR) to treat real groundwater contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). In an initial screening conducted in batch bioreactors, different groundwater samples from 5 wells of the contaminated site were fed with 5 growth substrates. The work led to the selection of butane as the best growth substrate, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE with a 90 % mineralization of the organic chlorine. A kinetic study conducted in batch and continuous flow PBRs and led to the identification of the best carrier. A kinetic study of butane and TCE biodegradation indicated that the attached-cell consortium is characterized by a lower TCE specific degredation rates and by a lower level of mutual butane-TCE inhibition. A 31 L bioreactor was designed and set up for upscaling the experiment. The second part of the research focused on the biodegradation of 4 polymers, with and with-out chemical pre-treatments: linear low density polyethylene (LLDPE), polyethylene (PP), polystyrene (PS) and polyvinyl chloride (PVC). Initially, the 4 polymers were subjected to different chemical pre-treatments: ozonation and UV/ozonation, in gaseous and aqueous phase. It was found that, for LLDPE and PP, the coupling UV and ozone in gas phase is the most effective way to oxidize the polymers and to generate carbonyl groups on the polymer surface. In further tests, the effect of chemical pretreatment on polyner biodegrability was studied. Gas-phase ozonated and virgin polymers were incubated aerobically with: (a) a pure strain, (b) a mixed culture of bacteria; and (c) a fungal culture, together with saccharose as a co-substrate.