921 resultados para confirming
Resumo:
Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Lead telluride micro and nanostructures have been grown on silicon and glass substrates by a simple thermal evaporation of PbTe in high vacuum of 3 x 10(-5) mbar. Growth was carried out for two different distances between the evaporation source and the substrates. Synthesized products consist of nanorods and micro towers for 2.4 cm and 3.4 cm of distance between the evaporation source and the substrates respectively. X-ray diffraction and transmission electron microscopy studies confirmed crystalline nature of the nanorods and micro towers. Nanorods were grown by vapor solid mechanism. Each micro tower consists of nano platelets and is capped with spherical catalyst particle at their end, suggesting that the growth proceeds via vapor-liquid-solid (VLS) mechanism. EDS spectrum recorded on the tip of the micro tower has shown the presence of Pb and Te confirming the self catalytic VLS growth of the micro towers. These results open up novel synthesis methods for PbTe nano and microstructures for various applications.
IGF-1 stimulated upregulation of cyclin D1 is mediated via STAT5 signaling pathway in neuronal cells
Resumo:
Signal Transducer and Activator of Transcription (STATs) regulate various target genes such as cyclin D1, MYC, and BCL2 in nonneuronal cells which contribute towards progression as well as prevention of apoptosis and are involved in differentiation and cell survival. However, in neuronal cells, the role of STATs in the activation and regulation of these target genes and their signaling pathways are still not well established. In this study, a robust cyclin D1 expression was observed following IGF-1 stimulation in SY5Y cells as well as neurospheres. JAK/STAT pathway was shown to be involved in this upregulation. A detailed promoter analysis revealed that the specific STAT involved was STAT5, which acted as a positive regulatory element for cyclin D1 expression. Overexpression studies confirmed increase in cyclin D1 expression in response to STAT5a and STAT5b constructs when compared to dominant-negative STAT5. siRNA targeting STAT5, diminished the cyclin D1 expression, further confirming that STAT5 specifically regulated cyclin D1 in neuronal cells. Together, these findings shed new light on the mechanism of IGF-1 mediated upregulation of cyclin D1 expression in neural cell lines as well as in neural stem cells via the JAK/STAT5 signaling cascade.
Resumo:
The primary objective of the present study is to show that for the most common configuration of an impactor system, the accelerometer cannot exactly reproduce the dynamic response of a specimen subjected to impact loading. An equivalent Lumped Parameter Model (LPM) of the given impactor set-up has been formulated for assessing the accuracy of an accelerometer mounted in a drop-weight impactor set-up for an axially loaded specimen. A specimen under the impact loading is represented by a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. Specimens made of steel, aluminium and fibre-reinforced composite (FRC) are used in the present study. Assuming the force-displacement response obtained in an actual impact test to be the true behaviour of the test specimen, a suitable numerical approach has been used to solve the governing non-linear differential equations of a three degrees-of-freedom (DOF) system in a piece-wise linear manner. The numerical solution of the governing differential equations following an explicit time integration scheme yields an excellent reproduction of the mechanical behaviour of the specimen, consequently confirming the accuracy of the numerical approach. However, the spring representing the accelerometer predicts a response that qualitatively matches the assumed force-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
Neutron powder diffraction study of Ba(Ti1-xZrx)O-3 at close composition intervals has revealed coexistence of ferroelectric phases: orthorhombic (Amm2) + tetragonal (P4mm) for 0.02 <= x <= 0.05 and rhombohedral (R3m) + orthorhombic (Amm2) for 0.07 <= x < 0.09. These compositions exhibit relatively enhanced piezoelectric properties as compared to their single phase counterparts outside this composition region, confirming the polymorphic phase boundary nature of the phase coexistence regions. (C) 2013 AIP Publishing LLC.
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
We report on a wafer scale fabrication method of a three-dimensional plasmonic metamaterial with strong chiroptical response in the visible region of the electromagnetic spectrum. The system was comprised of metallic nanoparticles arranged in a helical fashion, with high degree of flexibility over the choice of the underlying material, as well as their geometrical parameters. This resulted in exquisite control over the chiroptical properties, most importantly the spectral signature of the circular dichroism. In spite of the large variability in the arrangement, as well as the size and shape of the constituent nanoparticles, the average chiro-optical response of the material remained uniform across the wafer, thus confirming the suitability of this system as a large area chiral metamaterial. By simply heating the substrate for a few minutes, the geometrical properties of the nanoparticles could be altered, thus providing an additional handle towards tailoring the spectral response of this novel material.
Resumo:
In this paper we study the effective electron mass (EEM) in Nano wires (NWs) of nonlinear optical materials on the basis of newly formulated electron dispersion relation by considering all types of anisotropies of the energy band constants within the framework of k . p formalism. The results for NWs of III-V, ternary and quaternary semiconductors form special cases of our generalized analysis. We have also investigated the EEM in NWs of Bi, IV-VI, stressed Kane type materials, Ge, GaSb and Bi2Te3 by formulating the appropriate 1D dispersion law in each case by considering the influence of energy band constants in the respective cases. It has been found that the 1D EEM in nonlinear optical materials depend on the size quantum numbers and Fermi energy due to the anisotropic spin orbit splitting constant and the crystal field splitting respectively. The 1D EEM is Bi, IV-VI, stressed Kane type semiconductors and Ge also depends on both the Fermi energy and the size quantum numbers which are the characteristic features of such NWs. The EEM increases with increase in concentration and decreasing film thickness and for ternary and quaternary compounds the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test.
Resumo:
Herein, we describe the synthesis and biomimetic activity of a series of N,N-disubstituted thiones and selones that contain an imidazole pharmacophore. The N,N-disubstituted thiones do not show any inhibitory activity towards LPO-catalyzed oxidation reactions, but their corresponding N,N-disubstituted selones exhibit inhibitory activity towards LPO-catalyzed oxidation reactions. Substituents on the N atom of the imidazole ring appear to have a significant effect on the inhibition of LPO-catalyzed oxidation and iodination reactions. Selones 16, 17, and 19, which contain methyl, ethyl, and benzyl substituents, exhibit similar inhibition activities towards LPO-catalyzed oxidation reactions with IC50 values of 24.4, 22.5, and 22.5M, respectively. However, their activities are almost three-fold lower than that of the commonly used anti-thyroid drug methimazole (MMI). In contrast, selone 21, which contains a NCH2CH2OH substituent, exhibits high inhibitory activity, with an IC50 value of 7.2M, which is similar to that of MMI. The inhibitory activity of these selones towards LPO-catalyzed oxidation/iodination reactions is due to their ability to decrease the concentrations of the co-substrates (H2O2 and I2), either by catalytically reducing H2O2 (anti-oxidant activity) or by forming stable charge-transfer complexes with oxidized iodide species. The inhibition of LPO-catalyzed oxidation/iodination reactions by N,N-disubstituted selones can be reversed by increasing the concentration of H2O2. Interestingly, all of the N,N-disubstituted selones exhibit high anti-oxidant activities and their glutathione peroxidase (GPx)-like activity is 4-12-fold higher than that of the well-known GPx-mimic ebselen. These experimental and theoretical studies suggest that the selones exist as zwitterions, in which the imidazole ring contains a positive charge and the selenium atom carries a large negative charge. Therefore, the selenium moieties of these selones possess highly nucleophilic character. The 77SeNMR chemical shifts for the selones show large upfield shift, thus confirming the zwitterionic structure in solution.
Resumo:
A composite electrode made up of exfoliated graphite (EG) and diamond was prepared for the electrochemical oxidation of trichloroethylene (TCE). The SEM images of the EG-diamond material showed that diamond powders were dispersed on the surface of EG materials. The N-2 adsorption-desorption isotherm of EG-diamond material resulted in a poor adsorption capability due to the insertion of diamond powders into the porous matrix of EG. Raman spectroscopy revealed the presence of characteristic sp(3) bands of diamond confirming good interaction of diamond with EG. Electrochemical characterisation of EG-diamond in 0.1 M Na2SO4 resulted in an enhanced working potential window. The EG-diamond electrode was employed for the electrochemical oxidation of trichloroethylene (0.2 mM) in a Na2SO4 supporting electrolyte. The EG-diamond, in comparison to the pristine EG electrode, exhibited a higher removal efficiency of 94% (EG was 57%) and faster degradation kinetics of 25.3 x 10(-3) min(-1) showing pseudo first order kinetic behaviour. Under the optimised conditions, 73% total organic content (TOC) removal was achieved after 4 h of electrolysis. The degradation of TCE was also monitored with gas chromatography-mass spectrometry. Dichloroacetic acid (DCAA) was identified as a major intermediate product during the electrochemical oxidation of TCE. The electrochemical degradation of TCE at the EG-diamond electrode represents a cost effective method due to the ease of preparation of EG-diamond composite material without the necessity of diamond activation which is normally achieved through doping.
Resumo:
In the present investigation, the corrosive behaviour of Al 6061-TiN particulate composites prepared by liquid metallurgy has been studied in chloride medium using electroanalytical techniques such as Tafel, cyclic polarization and electrochemical impedance spectroscopy (EIS). Surface morphology of the sample electrodes was examined using scanning electron micrography and energy dispersive X-ray methods. X-ray diffraction technique was used to confirm inclusion of TiN particulates in the matrix alloy and identify the alloying elements and intermetallic compounds in the Al 6061 composites. Polarization studies indicate an increase in the corrosion resistance in composites compared to the matrix alloy. EIS study reveals that the polarization resistance (R (p)) increases with increase in TiN content in composites, thus confirming improved corrosion resistance in composites. The observed decrease in corrosion rate in the case of composites is due to decoupling between TiN particles and Al 6061 alloy. It is understood that after the initiation of corrosion, interfacial corrosion products may have decoupled the conducting ceramic TiN from Al 6061 matrix alloy thus eliminating the galvanic effect between them.
Resumo:
Hanuman langur is one of the widely distributed and extensively studied non-human diurnal primates in India. Until recently it was believed to be a single species - Semnopithecus entellus. Recent molecular and morphological studies suggest that the Hanuman langurs consists of at least three species S. entellus, S. hypoleucos and S. priam. Furthermore, morphological studies suggested that both S. hypoleucos and S. priam have at least three subspecies in each. We explored the use of ecological niche modeling (ENM) to confirm the validity of these seven taxa and an additional taxon S. johnii belonging to the same genus. MaxEnt modeling tool was used with 19 bioclimatic, 12 vegetation and 6 hydrological environmental layers. We reduced total environmental variables to 14 layers after testing for collinearity and an independent test for model prediction was done using ENMTools. A total of 196 non-overlapping data points from primary and secondary sources were used as inputs for ENM. Results showed eight distinct ecological boundaries, corroborating the eight taxa mentioned above thereby confirming validity of these eight taxa. The study, for the first time provided ecological variables that determined the ecological requirements and distribution of members of the Hanuman langur species complex in the Indian peninsula.
Resumo:
Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.
Resumo:
The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
The basic objective in the present study is to show that for the most common configuration of an impactor system, an accelerometer cannot exactly reproduce the dynamic response of a specimen subject to impact loading. Assessment of the accelerometer mounted in a drop-weight impactor setup for an axially loaded specimen is done with the aid of an equivalent lumped parameter model (LPM) of the setup. A steel hat-type specimen under the impact loading is represented as a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. A suitable numerical approach has been used to solve the non-linear governing equations for a 3 degrees-of-freedom system in a piece-wise linear manner. The numerical solution following an explicit time integration scheme is used to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the accelerometer, however, predicts a response that qualitatively matches the assumed load–displacement response of the test specimen with a perceptibly lower magnitude of load.