898 resultados para cone index
Resumo:
The present study examined whether a specific property of cell microstructures may be useful as a biomarker of aging. Specifically, the association between age and changes of cellular structures reflected in electrophoretic mobility of cell nuclei index (EMN index) values across the adult lifespan was examined. This report considers findings from cross sections of females (n = 1273) aged 18–98 years, and males (n = 506) aged 19–93 years. A Biotest apparatus was used to perform intracellular microelectrophoresis on buccal epithelial cells collected from each individual. EMN index was calculated on the basis of the number of epithelial cells with mobile nuclei in reference to the cells with immobile nuclei per 100 cells. Regression analyses indicated a significant negative association between EMN index value and age for men (r = −0.71, p < 0.001) and women (r = −0.60, p < 0.001); demonstrating a key requirement that must be met by a biomarker of aging. The strength of association observed between EMN index and age for both men and women was encouraging and supports the potential use of EMN index for determining a biological age of an individual (or a group). In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. In this study, a new attempt of complex explanation of cellular mechanisms contributing to age related changes of the EMN index was made. EMN index has demonstrated potential to meet criteria proposed for biomarkers of aging and further investigations are necessary.
Resumo:
A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.
Resumo:
Drag reduction studies are conducted using a flat disc tipped aerospike for a 120-degree apex angle blunt cone model in high enthalpy flows. Accelerometer based force balance is used for the drag force measurement in the newly established free piston driven shock tunnel, HST3. Drag reduction upto about 58 percent has been achieved for Mach 8 flow of 5 MJ/kg specific enthalpy at zero degree angle of attack.
Resumo:
Counterflow supersonic jet is used as a drag reduction device during the experiments in free piston driven shock tunnel, HST3. Accelerometer based force balance is employed to measure the drag force experienced by the 60-degree apex angle blunt cone model without and with the supersonic jet opposing the hypersonic flow. It is observed that the drag force decreases with increase in injection pressure ratio until the critical injection pressure is reached. Maximum reduction in drag force of 44 percent is recorded at the critical injection pressure ratio 22.36. Further increase in injection pressure ratio has reduced the percentage drag reduction. Change in nature of the flowfield around the model has also been observed across the critical injection pressure ratio.
Resumo:
Conventional methods for determining the refractive index demand specimens of optical quality, the preparation of which is often very difficult. An indirect determination by matching the refractive indices of specimen and immersion liquid is a practical alternative for photoelastic specimen of nonoptical quality. An experimental arrangement used for this technique and observations made while matching the refractive indices of three different specimens are presented.
Resumo:
Digital image
Resumo:
This paper introduces an index of tax optimality that measures the distance of some current tax structure from the optimal tax structure in the presence of public goods. This index is defined on the [0, 1] interval and measures the proportion of the optimal tax rates that will achieve the same welfare outcome as some arbitrarily given initial tax structure. We call this number the Tax Optimality Index. We also show how the basic methodology can be altered to derive a revenue equivalent uniform tax, which measures the tax burden implied by the public sector. A numerical example is used to illustrate the method developed, and extensions of the analysis to handle models with multiple households and nonlinear taxation structures are undertaken.
Resumo:
Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and Åland Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. Åland Island eye disease (AIED), originally described in a family living in Åland Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel α1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.
Resumo:
The flow around a 120 degrees blunt cone model with a base radius of 60mm has been visualised at Mach 14.8 and 9.1 using argon as the test gas, at the newly established high speed schlieren facility in the IISc hypersonic shock tunnel HST2. The experimental shock stand off distance around the blunt cone is compared with that obtained using a commercial CFD package. The computed values of shock stand off distance of the blunt cone is found to agree reasonably well with the experimental data.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.
Resumo:
Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam CT scanners were not explained by differences in image quality, which indicated the lack of optimisation. For paediatric radiography, a graphical method was created for setting the diagnostic reference levels in chest examinations, and the DRLs were given as a function of patient projection thickness. Paediatric DRLs were also given for sinus radiography. The detailed information about the patient data, exposure parameters and procedures provided tools for reducing the patient doses in paediatric radiography. The mean tissue doses presented for paediatric radiography enabled future risk assessments to be done. The calculated effective doses can be used for comparing different diagnostic procedures, as well as for comparing the use of similar technologies and procedures in different hospitals and countries.
Resumo:
Objectives To examine the effects of overall level and timing of physical activity (PA) on changes from a healthy body mass index (BMI) category over 12 years in young adult women. Patients and Methods Participants in the Australian Longitudinal Study on Women's Health (younger cohort, born 1973-1978) completed surveys between 2000 (age 22-27 years) and 2012 (age 34-39 years). Physical activity was measured in 2000, 2003, 2006, and 2009 and was categorized as very low, low, active, or very active at each survey, and a cumulative PA score for this 9-year period was created. Logistic regression was used to examine relationships between PA accumulated across all surveys (cumulative PA model) and PA at each survey (critical periods PA model), with change in BMI category (from healthy to overweight or healthy to obese) from 2000 to 2012. Results In women with a healthy BMI in 2000, there were clear dose-response relationships between accumulated PA and transition to overweight (P=.03) and obesity (P<.01) between 2000 and 2012. The critical periods analysis indicated that very active levels of PA at the 2006 survey (when the women were 28-33 years old) and active or very active PA at the 2009 survey (age 31-36 years) were most protective against transitioning to overweight and obesity. Conclusion These findings confirm that maintenance of very high PA levels throughout young adulthood will significantly reduce the risk of becoming overweight or obese. There seems to be a critical period for maintaining high levels of activity at the life stage when many women face competing demands of caring for infants and young children.
Resumo:
The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.