878 resultados para computer-assisted system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surgical treatment of liver tumours relies on precise localization of the lesions and detailed knowledge of the patient-specific vascular and biliary anatomy. Detailed three-dimensional (3D) anatomical information facilitates complete tumour removal while preserving a sufficient amount of functional liver tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS :    Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS :    The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS :    Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the clinical applicability of administering sodium nitroprusside by a closed-loop titration system compared with a manually adjusted system. The mean arterial pressure (MAP) was registered every 10 and 30 sec during the first 150 min after open heart surgery in 20 patients (group 1: computer regulation) and in ten patients (group 2: manual regulation). The results (16,343 and 2,912 data points in groups 1 and 2, respectively), were then analyzed in four time frames and five pressure ranges to indicate clinical efficacy. Sixty percent of the measured MAP in both groups was within the desired +/- 10% during the first 10 min. Thereafter until the end of observation, the MAP was maintained within +/- 10% of the desired set-point 90% of the time in group 1 vs. 60% of the time in group 2. One percent and 11% of data points were +/- 20% from the set-point in groups 1 and 2, respectively (p less than .05, chi-square test). The computer-assisted therapy provided better control of MAP, was safe to use, and helped to reduce nursing demands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In this paper we present a landmark-based augmented reality (AR) endoscope system for endoscopic paranasal and transnasal surgeries along with fast and automatic calibration and registration procedures for the endoscope. METHODS: Preoperatively the surgeon selects natural landmarks or can define new landmarks in CT volume. These landmarks are overlaid, after proper registration of preoperative CT to the patient, on the endoscopic video stream. The specified name of the landmark, along with selected colour and its distance from the endoscope tip, is also augmented. The endoscope optics are calibrated and registered by fast and automatic methods. Accuracy of the system is evaluated in a metallic grid and cadaver set-up. RESULTS: Root mean square (RMS) error of the system is 0.8 mm in a controlled laboratory set-up (metallic grid) and was 2.25 mm during cadaver studies. CONCLUSIONS: A novel landmark-based AR endoscope system is implemented and its accuracy is evaluated. Augmented landmarks will help the surgeon to orientate and navigate the surgical field. Studies prove the capability of the system for the proposed application. Further clinical studies are planned in near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective In order to benefit from the obvious advantages of minimally invasive liver surgery there is a need to develop high precision tools for intraoperative anatomical orientation, navigation and safety control. In a pilot study we adapted a newly developed system for computer-assisted liver surgery (CALS) in terms of accuracy and technical feasibility to the specific requirements of laparoscopy. Here, we present practical aspects related to laparoscopic computer assisted liver surgery (LCALS). Methods Our video relates to a patient presenting with 3 colorectal liver metastases in Seg. II, III and IVa who was selected in an appropriate oncological setting for LCALS using the CAScination system combined with 3D MEVIS reconstruction. After minimal laparoscopic mobilization of the liver, a 4- landmark registration method was applied to enable navigation. Placement of microwave needles was performed using the targeting module of the navigation system and correct needle positioning was confirmed by intraoperative sonography. Ablation of each lesion was carried out by application of microwave energy at 100 Watts for 1 minute. Results To acquire an accurate (less 0.5 cm) registration, 4 registration cycles were necessary. In total, seven minutes were required to accomplish precise registration. Successful ablation with complete response in all treated areas was assessed by intraoperative sonography and confirmed by postoperative CT scan. Conclusions This teaching video demonstrates the theoretical and practical key points of LCALS with a special emphasis on preoperative planning, intraoperative registration and accuracy testing by laparoscopic methodology. In contrast to mere ultrasound-guided ablation of liver lesions, LCALS offers a more dimensional targeting and higher safety control. This is currently also in routine use to treat vanishing lesions and other difficult to target focal lesions within the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The aim of this study was to evaluate imaging-based response to standardized neoadjuvant chemotherapy (NACT) regimen by dynamic contrast-enhanced magnetic resonance mammography (DCE-MRM), whereas MR images were analyzed by an automatic computer-assisted diagnosis (CAD) system in comparison to visual evaluation. MRI findings were correlated with histopathologic response to NACT and also with the occurrence of metastases in a follow-up analysis. PATIENTS AND METHODS Fifty-four patients with invasive ductal breast carcinomas received two identical MRI examinations (before and after NACT; 1.5T, contrast medium gadoteric acid). Pre-therapeutic images were compared with post-therapeutic examinations by CAD and two blinded human observers, considering morphologic and dynamic MRI parameters as well as tumor size measurements. Imaging-assessed response to NACT was compared with histopathologically verified response. All clinical, histopathologic, and DCE-MRM parameters were correlated with the occurrence of distant metastases. RESULTS Initial and post-initial dynamic parameters significantly changed between pre- and post-therapeutic DCE-MRM. Visually evaluated DCE-MRM revealed sensitivity of 85.7%, specificity of 91.7%, and diagnostic accuracy of 87.0% in evaluating the response to NACT compared to histopathology. CAD analysis led to more false-negative findings (37.0%) compared to visual evaluation (11.1%), resulting in sensitivity of 52.4%, specificity of 100.0%, and diagnostic accuracy of 63.0%. The following dynamic MRI parameters showed significant associations to occurring metastases: Post-initial curve type before NACT (entire lesions, calculated by CAD) and post-initial curve type of the most enhancing tumor parts after NACT (calculated by CAD and manually). CONCLUSIONS In the accurate evaluation of response to neoadjuvant treatment, CAD systems can provide useful additional information due to the high specificity; however, they cannot replace visual imaging evaluation. Besides traditional prognostic factors, contrast medium-induced dynamic MRI parameters reveal significant associations to patient outcome, i.e. occurrence of distant metastases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario. METHODS In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process. RESULTS Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of [Formula: see text]. CONCLUSIONS We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is twofold: first, to develop a process to automatically create parametric models of the aorta that can adapt to any possible intraoperative deformation of the vessel. Second, it intends to provide the tools needed to perform this deformation in real time, by means of a non-rigid registration method. This dynamically deformable model will later be used in a VR-based surgery guidance system for aortic catheterism procedures, showing the vessel changes in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M. S.)--University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois at Urbana-Champaign.