892 resultados para computational fluid dynamics (CFD)
Resumo:
Realizing scalable performance on high performance computing systems is not straightforward for single-phenomenon codes (such as computational fluid dynamics [CFD]). This task is magnified considerably when the target software involves the interactions of a range of phenomena that have distinctive solution procedures involving different discretization methods. The problems of addressing the key issues of retaining data integrity and the ordering of the calculation procedures are significant. A strategy for parallelizing this multiphysics family of codes is described for software exploiting finite-volume discretization methods on unstructured meshes using iterative solution procedures. A mesh partitioning-based SPMD approach is used. However, since different variables use distinct discretization schemes, this means that distinct partitions are required; techniques for addressing this issue are described using the mesh-partitioning tool, JOSTLE. In this contribution, the strategy is tested for a variety of test cases under a wide range of conditions (e.g., problem size, number of processors, asynchronous / synchronous communications, etc.) using a variety of strategies for mapping the mesh partition onto the processor topology.
Resumo:
The most common parallelisation strategy for many Computational Mechanics (CM) (typified by Computational Fluid Dynamics (CFD) applications) which use structured meshes, involves a 1D partition based upon slabs of cells. However, many CFD codes employ pipeline operations in their solution procedure. For parallelised versions of such codes to scale well they must employ two (or more) dimensional partitions. This paper describes an algorithmic approach to the multi-dimensional mesh partitioning in code parallelisation, its implementation in a toolkit for almost automatically transforming scalar codes to parallel form, and its testing on a range of ‘real-world’ FORTRAN codes. The concept of multi-dimensional partitioning is straightforward, but non-trivial to represent as a sufficiently generic algorithm so that it can be embedded in a code transformation tool. The results of the tests on fine real-world codes demonstrate clear improvements in parallel performance and scalability (over a 1D partition). This is matched by a huge reduction in the time required to develop the parallel versions when hand coded – from weeks/months down to hours/days.
Resumo:
In this paper we present some work concerned with the development and testing of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid fuels. The CFD model is coupled with a simple thermal pyrolysis model for combustible solid noncharring fuels, a six-flux radiation model and an eddy-dissipation model for gaseous combustion. The model is then used to simulate a series of small-scale room fire experiments in which the target solid fuel is polymethylmethacrylate. The numerical predictions produced by this coupled model are found to be in very good agreement with experimental data. Furthermore, numerical predictions of the relationship between the air entrained into the fire compartment and the ventilation factor produce a characteristic linear correlation with constant of proportionality 0.38 kg/sm5/12. The simulation results also suggest that the model is capable of predicting the onset of "flashover" type behavior within the fire compartment.
Resumo:
Over recent years there has been an increase in the use of generic Computational Fluid Dynamics (CFD) software packages spread across various application fields. This has created the need for the integration of expertise into CFD software. Expertise can be integrated into CFD software in the form of an Intelligent Knowledge-Based System (IKBS). The advantages of integrating intelligence into generic engineering software are discussed with a special view to software engineering considerations. The software modelling cycle of a typical engineering problem is identified and the respective expertise and user control needed for each modelling phase is shown. The requirements of an IKBS for CFD software are discussed and compared to current practice. The blackboard software architecture is presented. This is shown to be appropriate for the integration of an IKBS into an engineering software package. This is demonstrated through the presentation of the prototype CFD software package FLOWES.
Resumo:
The PHYSICA software was developed to enable multiphysics modelling allowing for interaction between Computational Fluid Dynamics (CFD) and Computational Solid Mechanics (CSM) and Computational Aeroacoustics (CAA). PHYSICA uses the finite volume method with 3-D unstructured meshes to enable the modelling of complex geometries. Many engineering applications involve significant computational time which needs to be reduced by means of a faster solution method or parallel and high performance algorithms. It is well known that multigrid methods serve as a fast iterative scheme for linear and nonlinear diffusion problems. This papers attempts to address two major issues of this iterative solver, including parallelisation of multigrid methods and their applications to time dependent multiscale problems.
Resumo:
A new approach to the prediction of bend lifetime in pneumatic conveyors, subject to erosive wear is described. Mathematical modelling is exploited. Commercial Computational Fluid Dynamics (CFD) software is used for the prediction of air flow and particle tracks, and custom code for the modelling of bend erosion and lifetime prediction. The custom code uses a toroidal geometry, and employs a range of empirical data rather than trying to fit classical erosion models to a particular circumstance. The data used was obtained relatively quickly and easily from a gas-blast erosion tester. A full-scale pneumatic conveying rig was used to validate a sample of the bend lifetime predictions, and the results suggest accuracy of within ±65%, using calibration methods. Finally, the work is distilled into user-friendly interactive software that will make erosion lifetime predictions for a wide range of bends under varying conveying conditions. This could be a valuable tool for the pneumatic conveyor design or maintenance engineer.
Resumo:
This paper presents simulated computational fluid dynamics (CFD) results for comparison against experimental data. The performance of four turbulence models has been assessed for electronic application areas considering both fluid flow and heat transfer phenomenon. CFD is vast becoming a powerful and almost essential tool for design, development and optimization in engineering problems. However turbulence models remain to be the key problem issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the performance of the turbulence model employed together with the wall functions implemented. To be able to resolve the abrupt changes in the turbulent energy and other parameters near the wall a particularly fine mesh is necessary which unfortunately increases the computer storage capacity requirements. The objective of turbulence modelling is to enhance computational procdures of sufficient acccuracy and generality for engineers to anticipate the Reynolds stresses and the scalar transport terms.
Resumo:
The electronics industry is developing rapidly together with the increasingly complex problem of microelectronic equipment cooling. It has now become necessary for thermal design engineers to consider the problem of equipment cooling at some level. The use of Computational Fluid Dynamics (CFD) for such investigations is fast becoming a powerful and almost essential tool for the design, development and optimisation of engineering applications. However turbulence models remain a key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt fluctuations experienced by the turbulent energy and other parameters located at near wall regions and shear layers a particularly fine computational mesh is necessary which inevitably increases the computer storage and run-time requirements. This paper will discuss results from an investigation into the accuract of currently used turbulence models. Also a newly formulated transitional hybrid turbulence model will be introduced with comparisonsaagainst experimental data.
Resumo:
The electronics industry and the problems associated with the cooling of microelectronic equipment are developing rapidly. Thermal engineers now find it necessary to consider the complex area of equipment cooling at some level. This continually growing industry also faces heightened pressure from consumers to provide electronic product miniaturization, which in itself increases the demand for accurate thermal management predictions to assure product reliability. Computational fluid dynamics (CFD) is considered a powerful and almost essential tool for the design, development and optimization of engineering applications. CFD is now widely used within the electronics packaging design community to thermally characterize the performance of both the electronic component and system environment. This paper discusses CFD results for a large variety of investigated turbulence models. Comparison against experimental data illustrates the predictive accuracy of currently used models and highlights the growing demand for greater mathematical modelling accuracy with regards to thermal characterization. Also a newly formulated low Reynolds number (i.e. transitional) turbulence model is proposed with emphasis on hybrid techniques.
Resumo:
The SMARTFIRE Computational Fluid Dynamics (CFD) fire field model has successfully reproduced the observed characteristics including measured temperatures, species concentrations and time to flashover for a post-crash fire experiment conducted by the FAA within their C-133 cabin test facility. In this test only one exit was open in order to provide ventilation for the developing cabin fire. In real post-crash fires, many exits are likely to be open as passangers attempt to evacuate. In this paper, the likely impacts on evacuation of a post-crash fire in which various exiting combinations are available are investigated. The fire scenario, investigated using the SMARTFIRE software, is based on the C-133 experiment but with a fully furnished cabin and with four different exit availability options. The fire data is imported into the airEXODUS evacuation simulation software and the resulting evacuations examined. The combined fire and evacuation analysis reveals that even though the aircraft configuration is predicted to comfortably satisfy the evacuation certification requirement, when fire is included, a number of casualties result, even from the certification compliant exit configuration.
Resumo:
This paper presents the challenges encountered in modelling biofluids in microchannels. In particular blood separation implemented in a T-microchannel device is analysed. Microfluids behave different from the counterparts in the microscale and a different approach has been adopted here to model them, which emphasize the roles of viscous forces, high shear rate performance and particle interaction in microscope. A T-microchannel design is numerically analysed by means of computational fluid dynamics (CFD) to investigate the effectiveness of blood separation based on the bifurcation law and other bio-physical effects. The simulation shows that the device can separate blood cells from plasma.
Resumo:
An aerodynamic sound source extraction from a general flow field is applied to a number of model problems and to a problem of engineering interest. The extraction technique is based on a variable decomposition, which results to an acoustic correction method, of each of the flow variables into a dominant flow component and a perturbation component. The dominant flow component is obtained with a general-purpose Computational Fluid Dynamics (CFD) code which uses a cell-centred finite volume method to solve the Reynolds-averaged Navier–Stokes equations. The perturbations are calculated from a set of acoustic perturbation equations with source terms extracted from unsteady CFD solutions at each time step via the use of a staggered dispersion-relation-preserving (DRP) finite-difference scheme. Numerical experiments include (1) propagation of a 1-D acoustic pulse without mean flow, (2) propagation of a 2-D acoustic pulse with/without mean flow, (3) reflection of an acoustic pulse from a flat plate with mean flow, and (4) flow-induced noise generated by the an unsteady laminar flow past a 2-D cavity. The computational results demonstrate the accuracy for model problems and illustrate the feasibility for more complex aeroacoustic problems of the source extraction technique.
Resumo:
This paper presents modelling and design optimization of a microfeeder which, as part of a microassembly system, is used for contactless object delivery. The microfeeder consists of an array of microactuators which are controlled by electrostatic actuation and used for maneuvering outcoming air jet for object hovering and delibery. The airflow behaviour in the microactuator is analysed by means of fluid mechanics and Computational Fluid Dynamics (CFD) simulation from three aspects, theoretical analysis, initial design assessment, and design modifications. The focus is put on the basic types of the microfeeder structure and the effects of structural details to the systematic performance. The structural pattern of the microactuator for forming airflow nozzle is identified and two design plans are proposed as basic structure patterns of pneumatic microactuators. The optimized design numerically shows the ability of delivering objects. This paper analyses the flow distribution pattern in microactuators and points out a way for effective design of pneumatic microfeeder systems. The optimization strategy provided by the present paper has close relevance to the design and manufacture of pneumatic microfeeder systems.
Resumo:
Since their introduction in the 1950s, marine outfalls with diffusers have been prone to saline intrusion, a process in which seawater ingresses into the outfall. This can greatly reduce the dilution and subsequent dispersion of wastewater discharged, sometimes resulting in serious deterioration of coastal water quality. Although long aware of the difficulties posed by saline intrusion, engineers still lack satisfactory methods for its prediction and robust design methods for its alleviation. However, with recent developments in numerical methods and computer power, it has been suggested that commercially available computational fluid dynamics (CFD) software may be a useful aid in combating this phenomenon by improving understanding through synthesising likely behaviour. This document reviews current knowledge on saline intrusion and its implications and then outlines a model-scale investigation of the process undertaken at Queen's University Belfast, using both physical and CFD methods. Results are presented for a simple outfall configuration, incorporating several outlets. The features observed agree with general observations from full-scale marine outfalls, and quantify the intricate internal flow mechanisms associated with saline intrusion. The two-dimensional numerical model was found to represent saline intrusion, but in a qualitative manner, not yet adequate for design purposes. Specific areas requiring further development were identified. The ultimate aim is to provide a reliable, practical and cost effective means by which engineers can minimise saline intrusion through optimised outfall design.
Resumo:
Previous researchers use the velocity decay as an input to investigate the ship’s propeller jet induced scour. A researcher indicated that most of the equations used to predict the stability of various protection systems are often missing a physical background. The momentum decay and energy decay are currently proposed as an initial input for seabed scouring investigation, which are more sensible in physics. Computational fluid dynamics (CFD) and laser Doppler anemometry (LDA) experiments are used to obtain the velocity data and then transforming into momentum and energy decays. The findings proposed several exponential equations of velocity, momentum and energy decays to estimate the region exposed to the seabed scouring.