962 resultados para compressible fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a level set method is developed for simulating the motion of a fluid particle rising in non-Newtonian fluids described by generalized Newtonian as well as viscoelastic model fluids. As the shear-thinning model we use a Carreau-Yasuda model, and the viscoelastic effect can be modeled with Oldroyd-B constitutive equations. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The level set method is implemented to compute the motion of a bubble in a Newtonian fluid as one of typical examples for validation, and the computational results are in good agreement with the reported experimental data.The level set method is also applied for simulating a Newtonian drop rising in Carreau-Yasuda and Oldroyd-B fluids.Numerical results including noticeably negative wake behind the drop and viscosity field are obtained, and compare satisfactorily with the known literature data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work has been carried out to investigate on the average void fraction of gas/non-Newtonian fluids flow in downward inclined pipes. The influences of pipe inclination angle on the average void fraction were studied experimentally. A simple correlation, which incorporated the method of Vlachos et al. for gas/Newtonain fluid horizontal flow, the correction factor of Farooqi and Richardson and the pipe inclination angle, was proposed to predict the average void fraction of gas/non-Newtonian power-law stratified flow in downward inclined pipes. The correlation was based on 470 data points covering a wide range of flow rates for different systems at diverse angles. A good agreement was obtained between theory and data and the fitting results could describe the majority of the experimental data within ±20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the slow viscous flow of a gas past a sphere is considered. The fluid cannot be treated incompressible in the limit when the Reynolds number Re, and the Mach number M, tend to zero in such a way that Re ~ o(M^2 ). In this case, the lowest order approximation to the steady Navier-Stokes equations of motion leads to a paradox discovered by Lagerstrom and Chester. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme that takes into account certain terms in the full Navier-Stokes equations that drop out in the approximation used by the above authors. It is found however that the drag predicted by the theory does not agree with R. A. Millikan's classic experiments on sphere drag.

The whole question of the applicability of the Navier-Stokes theory when the Knudsen number M/Re is not small is examined. A new slip condition is proposed. The idea that the Navier-Stokes equations coupled with this condition may adequately describe small Reynolds number flows when the Knudsen number is not too large is looked at in some detail. First, a general discussion of asymptotic solutions of the equations for all such flows is given. The theory is then applied to several concrete problems of fluid motion. The deductions from this theory appear to interpret and summarize the results of Millikan over a much wider range of Knudsen numbers (almost up to the free molecular or kinetic limit) than hitherto Believed possible by a purely continuum theory. Further experimental tests are suggested and certain interesting applications to the theory of dilute suspensions in gases are noted. Some of the questions raised in the main body of the work are explored further in the appendices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.

The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional spatial domains. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of higher-order backward differentiation formulae (BDF) and the alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. In fact this thesis presents, for the first time in the literature, high-order time-convergence curves for Navier-Stokes solvers based on the ADI strategy---previous ADI solvers for the Navier-Stokes equations have not demonstrated orders of temporal accuracy higher than one. An extended discussion is presented in this thesis which places on a solid theoretical basis the observed quasi-unconditional stability of the methods of orders two through six. The performance of the proposed solvers is favorable. For example, a two-dimensional rough-surface configuration including boundary layer effects at Reynolds number equal to one million and Mach number 0.85 (with a well-resolved boundary layer, run up to a sufficiently long time that single vortices travel the entire spatial extent of the domain, and with spatial mesh sizes near the wall of the order of one hundred-thousandth the length of the domain) was successfully tackled in a relatively short (approximately thirty-hour) single-core run; for such discretizations an explicit solver would require truly prohibitive computing times. As demonstrated via a variety of numerical experiments in two- and three-dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, useful stability properties, limited dispersion, and high parallel efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis outlines the construction of several types of structured integrators for incompressible fluids. We first present a vorticity integrator, which is the Hamiltonian counterpart of the existing Lagrangian-based fluid integrator. We next present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness to coarse spatial and temporal resolutions of geometric integrators, and the simplicity of homogenized boundary conditions on regular grids to deal with arbitrarily-shaped domains with sub-grid accuracy.

Both these numerical methods involve approximating the Lie group of volume-preserving diffeomorphisms by a finite-dimensional Lie-group and then restricting the resulting variational principle by means of a non-holonomic constraint. Advantages and limitations of this discretization method will be outlined. It will be seen that these derivation techniques are unable to yield symplectic integrators, but that energy conservation is easily obtained, as is a discretized version of Kelvin's circulation theorem.

Finally, we outline the basis of a spectral discrete exterior calculus, which may be a useful element in producing structured numerical methods for fluids in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.

The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.

Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.

A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.

A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.

Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of a fluid having a non-uniform temperature stratification is examined analytically for the response of infinitesimal disturbances. The growth rates of disturbances have been established for a semi-infinite fluid for Rayleigh numbers of 103, 104, and 105 and for Prandtl numbers of 7.0 and 0.7.

The critical Rayleigh number for a semi-infinite fluid, based on the effective fluid depth, is found to be 32, while it is shown that for a finite fluid layer the critical Rayleigh number depends on the rate of heating. The minimum critical Rayleigh number, based on the depth of a fluid layer, is found to be 1340.

The stability of a finite fluid layer is examined for two special forms of heating. The first is constant flux heating, while in the second, the temperature of the lower surface is increased uniformly in time. In both cases, it is shown that for moderate rates of heating the critical Rayleigh number is reduced, over the value for very slow heating, while for very rapid heating the critical Rayleigh number is greatly increased. These results agree with published experimental observations.

The question of steady, non-cellular convection is given qualitative consideration. It is concluded that, although the motion may originate from infinitesimal disturbances during non-uniform heating, the final flow field is intrinsically non-linear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and experimental studies were made on two classes of buoyant jet problems, namely:

1) an inclined, round buoyant yet in a stagnant environment with linear density-stratification;

2) a round buoyant jet in a uniform cross stream of homogenous density.

Using the integral technique of analysis, assuming similarity, predictions can be made for jet trajectory, widths, and dilution ratios, in a density-stratified or flowing environment. Such information is of great importance in the design of disposal systems for sewage effluent into the ocean or waste gases into the atmosphere.

The present study of a buoyant jet in a stagnant environment has extended the Morton type of analysis to cover the effect of the initial angle of discharge. Numerical solutions have been presented for a range of initial conditions. Laboratory experiments were conducted for photographic observations of the trajectories of dyed jets. In general the observed jet forms agreed well with the calculated trajectories and nominal half widths when the value of the entrainment coefficient was taken to be α = 0.082, as previously suggested by Morton.

The problem of a buoyant jet in a uniform cross stream was analyzed by assuming an entrainment mechanism based upon the vector difference between the characteristic jet velocity and the ambient velocity. The effect of the unbalanced pressure field on the sides of the jet flow was approximated by a gross drag term. Laboratory flume experiments with sinking jets which are directly analogous to buoyant jets were performed. Salt solutions were injected into fresh water at the free surface in a flume. The jet trajectories, dilution ratios and jet half widths were determined by conductivity measurements. The entrainment coefficient, α, and drag coefficient, Cd, were found from the observed jet trajectories and dilution ratios. In the ten cases studied where jet Froude number ranged from 10 to 80 and velocity ratio (jet: current) K from 4 to 16, α varied from 0.4 to 0.5 and Cd from 1.7 to 0.1. The jet mixing motion for distance within 250D was found to be dominated by the self-generated turbulence, rather than the free-stream turbulence. Similarity of concentration profiles has also been discussed.