981 resultados para component mode synthesis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The U3 small nucleolar ribonucleoprotein (snoRNP) is required for three cleavage events that generate the mature 18S rRNA from the pre-rRNA. In Saccharomyces cerevisiae, depletion of Mpp10, a U3 snoRNP-specific protein, halts 18S rRNA production and impairs cleavage at the three U3 snoRNP-dependent sites: A0, A1, and A2. We have identified truncation mutations of Mpp10 that affect 18S rRNA synthesis and confer cold-sensitivity and slow growth. However, distinct from yeast cells depleted of Mpp10, the mutants carrying these truncated Mpp10 proteins accumulate a novel precursor, resulting from cleavage at only A0. The Mpp10 truncations do not alter association of Mpp10 with the U3 snoRNA, nor do they affect snoRNA or protein stability. Thus, the role in processing of the U3 snoRNP can be separated into cleavage at the A0 site, which occurs in the presence of truncated Mpp10, and cleavage at the A1/A2 sites, which occurs only with intact Mpp10. These results strongly argue for a role for Mpp10 in processing at the A1/A2 sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death (PCD) during neuronal development and disease has been shown to require de novo RNA synthesis. However, the time course and regulation of target genes is poorly understood. By using a brain-biased array of over 7,500 cDNAs, we profiled this gene expression component of PCD in cerebellar granule neurons challenged separately by potassium withdrawal, combined potassium and serum withdrawal, and kainic acid administration. We found that hundreds of genes were significantly regulated in discreet waves including known genes whose protein products are involved in PCD. A restricted set of genes was regulated by all models, providing evidence that signals inducing PCD can regulate large assemblages of genes (of which a restricted subset may be shared in multiple pathways).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clostridium difficile, a causative agent of antibiotic-associated diarrhea and its potentially lethal form, pseudomembranous colitis, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The level of toxin production appears to be critical for determining the severity of the disease, but the mechanism by which toxin synthesis is regulated is unknown. The product of a gene, txeR, that lies just upstream of the tox gene cluster was shown to be needed for tox gene expression in vivo and to activate promoter-specific transcription of the tox genes in vitro in conjunction with RNA polymerases from C. difficile, Bacillus subtilis, or Escherichia coli. TxeR was shown to function as an alternative sigma factor for RNA polymerase. Because homologs of TxeR regulate synthesis of toxins and a bacteriocin in other Clostridium species, TxeR appears to be a prototype for a novel mode of regulation of toxin genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cortical microtubule array provides spatial information to the cellulose-synthesizing machinery within the plasma membrane of elongating cells. Until now data indicated that information is transferred from organized cortical microtubules to the cellulose-synthesizing complex, which results in the deposition of ordered cellulosic walls. How cortical microtubules become aligned is unclear. The literature indicates that biophysical forces, transmitted by the organized cellulose component of the cell wall, provide a spatial cue to orient cortical microtubules. This hypothesis was tested on tobacco (Nicotiana tabacum L.) protoplasts and suspension-cultured cells treated with the cellulose synthesis inhibitor isoxaben. Isoxaben (0.25–2.5 μm) inhibited the synthesis of cellulose microfibrils (detected by staining with 1 μg mL−1 fluorescent dye and polarized birefringence), the cells failed to elongate, and the cortical microtubules failed to become organized. The affects of isoxaben were reversible, and after its removal microtubules reorganized and cells elongated. Isoxaben did not depolymerize microtubules in vivo or inhibit the polymerization of tubulin in vitro. These data are consistent with the hypothesis that cellulose microfibrils, and hence cell elongation, are involved in providing spatial cues for cortical microtubule organization. These results compel us to extend the microtubule/microfibril paradigm to include the bidirectional flow of information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of recombination-dependent replication (RDR) in the T4 system have revealed the critical roles played by mediator proteins in the timely and productive loading of specific enzymes onto single-stranded DNA (ssDNA) during phage RDR processes. The T4 recombination mediator protein, uvsY, is necessary for the proper assembly of the T4 presynaptic filament (uvsX recombinase cooperatively bound to ssDNA), leading to the recombination-primed initiation of leading strand DNA synthesis. In the lagging strand synthesis component of RDR, replication mediator protein gp59 is required for the assembly of gp41, the DNA helicase component of the T4 primosome, onto lagging strand ssDNA. Together, uvsY and gp59 mediate the productive coupling of homologous recombination events to the initiation of T4 RDR. UvsY promotes presynaptic filament formation on 3′ ssDNA-tailed chromosomes, the physiological primers for T4 RDR, and recent results suggest that uvsY also may serve as a coupling factor between presynapsis and the nucleolytic resection of double-stranded DNA ends. Other results indicate that uvsY stabilizes uvsX bound to the invading strand, effectively preventing primosome assembly there. Instead, gp59 directs primosome assembly to the displaced strand of the D loop/replication fork. This partitioning mechanism enforced by the T4 recombination/replication mediator proteins guards against antirecombination activity of the helicase component and ensures that recombination intermediates formed by uvsX/uvsY will efficiently be converted into semiconservative DNA replication forks. Although the major mode of T4 RDR is semiconservative, we present biochemical evidence that a conservative “bubble migration” mode of RDR could play a role in lesion bypass by the T4 replication machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The open reading frame P (ORF P) is located in the domain and on the DNA strand of the herpes simplex virus 1 transcribed during latent infection. ORF P is not expressed in productively infected cells as a consequence of repression by the binding of the major viral regulatory protein to its high-affinity binding site. In cells infected with a mutant virus carrying a derepressed gene, ORF P protein is extensively posttranslationally processed. We report that ORF P interacts with a component of the splicing factor SF2/ASF, pulls down a component of the SM antigens, and colocalizes with splicing factors in nuclei of infected cells. The hypothesis that ORF P protein may act to regulate viral gene expression, particularly in situations such as latently infected sensory neurons in which the major regulatory protein is not expressed, is supported by the evidence that in cells infected with a mutant in which the ORF P gene was derepressed, the products of the regulatory genes alpha 0 and alpha 22 are reduced in amounts early in infection but recover late in infection. The proteins encoded by these genes are made from spliced mRNAs, and the extent of recovery of these proteins late in infection correlates with the extent of accumulation of post-translationally processed forms of ORF P protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(+)-Hydantocidin, a recently discovered natural spironucleoside with potent herbicidal activity, is shown to be a proherbicide that, after phosphorylation at the 5' position, inhibits adenylosuccinate synthetase, an enzyme involved in de novo purine synthesis. The mode of binding of hydantocidin 5'-monophosphate to the target enzyme was analyzed by determining the crystal structure of the enzyme-inhibitor complex at 2.6-A resolution. It was found that adenylosuccinate synthetase binds the phosphorylated compound in the same fashion as it does adenosine 5'-monophosphate, the natural feedback regulator of this enzyme. This work provides the first crystal structure of a herbicide-target complex reported to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an approach to the synthesis of peptides from segments bearing no protecting groups through an orthogonal coupling method to capture the acyl segment as a thioester that then undergoes an intramolecular acyl transfer to the amine component with formation of a peptide bond. Two orthogonal coupling methods to give the covalent ester intermediate were achieved by either a thiol-thioester exchange mediated by a trialkylphosphine and an alkylthiol or a thioesterification by C alpha-thiocarboxylic acid reacting with a beta-bromo amino acid. With this approach, unprotected segments ranging from 4 to 37 residues were coupled to aqueous solution to give free peptides up to 54 residues long with high efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UME6 gene of Saccharomyces cerevisiae was identified as a mitotic repressor of early meiosis-specific gene expression. It encodes a Zn2Cys6 DNA-binding protein which binds to URS1, a promoter element needed for both mitotic repression and meiotic induction of early meiotic genes. This paper demonstrates that a complete deletion of UME6 causes not only vegetative derepression of early meiotic genes during vegetative growth but also a significant reduction in induction of meiosis-specific genes, accompanied by a severe defect in meiotic progression. After initiating premeiotic DNA synthesis the vast majority of cells (approximately 85%) become arrested in prophase and fail to execute recombination; a minority of cells (approximately 15%) complete recombination and meiosis I, and half of these form asci. Quantitative analysis of the same early meiotic transcripts that are vegetatively derepressed in the ume6 mutant, SPO11, SPO13, IME2, and SPO1, indicates a low level of induction in meiosis above their vegetative derepressed levels. In addition, the expression of later meiotic transcripts, SPS2 and DIT1, is significantly delayed and reduced. The expression pattern of early meiotic genes in ume6-deleted cells is strikingly similar to that of early meiotic genes with promoter mutations in URS1. These results support the view that UME6 and URS1 are part of a developmental switch that controls both vegetative repression and meiotic induction of meiosis-specific genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide synthesized by inducible nitric oxide synthase (iNOS) has been implicated as a mediator of inflammation in rheumatic and autoimmune diseases. We report that exposure of lipopolysaccharide-stimulated murine macrophages to therapeutic concentrations of aspirin (IC50 = 3 mM) and hydrocortisone (IC50 = 5 microM) inhibited the expression of iNOS and production of nitrite. In contrast, sodium salicylate (1-3 mM), indomethacin (5-20 microM), and acetaminophen (60-120 microM) had no significant effect on the production of nitrite at pharmacological concentrations. At suprapharmacological concentrations, sodium salicylate (IC50 = 20 mM) significantly inhibited nitrite production. Immunoblot analysis of iNOS expression in the presence of aspirin showed inhibition of iNOS expression (IC50 = 3 mM). Sodium salicylate variably inhibited iNOS expression (0-35%), whereas indomethacin had no effect. Furthermore, there was no significant effect of these nonsteroidal anti-inflammatory drugs on iNOS mRNA expression at pharmacological concentrations. The effect of aspirin was not due to inhibition of cyclooxygenase 2 because both aspirin and indomethacin inhibited prostaglandin E2 synthesis by > 75%. Aspirin and N-acetylimidazole (an effective acetylating agent), but not sodium salicylate or indomethacin, also directly interfered with the catalytic activity of iNOS in cell-free extracts. These studies indicate that the inhibition of iNOS expression and function represents another mechanism of action for aspirin, if not for all aspirin-like drugs. The effects are exerted at the level of translational/posttranslational modification and directly on the catalytic activity of iNOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic initiation factor 2B (eIF-2B) is an essential component of the pathway of peptide-chain initiation in mammalian cells, yet little is known about its molecular structure and regulation. To investigate the structure, regulation, and interactions of the individual subunits of eIF-2B, we have begun to clone, characterize, and express the corresponding cDNAs. We report here the cloning and characterization of a 1510-bp cDNA encoding the alpha subunit of eIF-2B from a rat brain cDNA library. The cDNA contains an open reading frame of 918 bp encoding a polypeptide of 305 aa with a predicted molecular mass of 33.7 kDa. This cDNA recognizes a single RNA species approximately 1.6 kb in length on Northern blots of RNA from rat liver. The predicted amino acid sequence contains regions identical to the sequences of peptides derived from bovine liver eIF-2B alpha subunit. Expression of this cDNA in vitro yields a peptide which comigrates with natural eIF-2B alpha in SDS/polyacrylamide gels. The predicted amino acid sequence exhibits 42% identity to that deduced for the Saccharomyces cerevisiae GCN3 protein, the smallest subunit of yeast eIF-2B. In addition, expression of the rat cDNA in yeast functionally complements a gcn3 deletion for the inability to induce histidine biosynthetic genes under the control of GCN4. These results strongly support the hypothesis that mammalian eIF-2 alpha and GCN3 are homologues. Southern blots indicate that the eIF-2B alpha cDNA also recognizes genomic DNA fragments from several other species, suggesting significant homology between the rat eIF-2B alpha gene and that from other species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agonists of the dopamine D1/D5 receptors that are positively coupled to adenylyl cyclase specifically induce a slowly developing long-lasting potentiation of the field excitatory postsynaptic potential in the CA1 region of the hippocampus that lasts for > 6 hr. This potentiation is blocked by the specific D1/D5 receptor antagonist SCH 23390 and is occluded by the potentiation induced by cAMP agonists. An agonist of the D2 receptor, which is negatively coupled to adenylyl cyclase through G alpha i, did not induce potentiation. Although this slow D1/D5 agonist-induced potentiation is partially independent of N-methyl-D-aspartate receptors, it seems to share some steps with and is occluded by the late phase of long-term potentiation (LTP) produced by three repeated trains of nerve stimuli applied to the Schaffer collateral pathway. Similarly, the D1/D5 antagonist SCH 23390 attenuates the late phase of the LTP induced by repeated trains, and the D1/D5 agonist-induced potentiation is blocked by the protein synthesis inhibitor anisomycin. These results suggest that the D1/D5 receptor may be involved in the late, protein synthesis-dependent component of LTP in the hippocampal CA1 region, either as an ancillary component or as a mediator directly contributing to the late phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bromonium-promoted cyclization of conjugated aminodienes is described. The reaction proceeds smoothly in the presence of N-bromosuccinimide as halonium promoter, and using N-tosyl-protected aminodienes as substrates, to give the corresponding halocyclization products in high yields and with high diastereoselectivities. It can be envisaged that the formation of these products is the result of an SN2′-type ring-opening of a terminal bromonium intermediate in a 5-exo-trig or 6-exo-trig cyclization mode. The presence of an allyl bromide moiety in the haloamination products makes these molecules highly attractive from a synthetic point of view, as it opens the way for further transformations. Thus, allylic substitution reactions with different nucleophiles (acetate, azide, cyanide, and malonate), palladium-catalysed Suzuki coupling, and silver-mediated bromine displacement reactions were carried out successfully.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general synthesis of highly substituted pyrrolizidines can be performed by a multicomponent 1,3-dipolar cycloaddition using proline ester hydrochlorides, aldehydes and dipolarophiles, at room temperature without catalysts or in the presence of AgOAc (5 mol %). In the case of (2S,4R)-4-hydroxyproline derivatives it is possible to obtain enantioenriched pyrrolizidines with high control of the regio- and diastereoselectivity affording the adducts 2,4-trans-2,5-trans according to an endo-approach and a S-dipole geometry of the in situ generated azomethine ylide. For proline esters a similar regioselectivity and endo-diastereoselectivity are observed when the dipole promotes an α-attack. However, when ethyl glyoxylate is used as aldehyde component the γ-attack of the S-ylide takes place preferentially giving rise the opposite regioselectivity for acrylic dipolarophiles, being crucial the role of silver acetate. In this case, the exo-adducts with a 2,3-cis-2,5-trans relative configuration are diastereoselectively obtained. In addition, computational studies have also been carried out to shed light on the origins of the diastereo- and regioselectivity observed for the described 1,3-dipolar cycloadditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usinig original data on 1,5000 mandibles, but mainly previously published data, I present a overview of the distribution characteristics of mandibular torus and a hypothesis concerning its cause. Pedigree studies have established that genetic factors influence torus development. Extrinsic factors are strongly implicated by other evidence: prevalence among Arctic peoples, effect of dietary change, age regression, preponderance in males and on the right side, effect of cranial deformation, concurrence with palatine torus and maxillary alveolar exostoses, and clinical evidence. I propose that the primary factor is masticatory stress. According to a mechanism suggested by orthodontic research, the horizontal component of bite force tips the lower canine, premolars and first molar so that their root apices exert pressure on the periodontal membrane, causing formation of new bone on the lingual cortical plate of the alveolar process. Thus formed, the hyperostosis is vulnerable to trauma and its periosteal covering becomes bruised causing additional deposition of bone. Genes influence torus indirectly through their effect on occlusion. A patern of increased expressivity with incidence suggests that a quasicontinuous model may provide a better fit to pedigree data than single locus models previously tested.