903 resultados para cluster feature
Resumo:
The concept of feature selection in a nonparametric unsupervised learning environment is practically undeveloped because no true measure for the effectiveness of a feature exists in such an environment. The lack of a feature selection phase preceding the clustering process seriously affects the reliability of such learning. New concepts such as significant features, level of significance of features, and immediate neighborhood are introduced which result in meeting implicitly the need for feature slection in the context of clustering techniques.
Resumo:
This paper presents two algorithms for smoothing and feature extraction for fingerprint classification. Deutsch's(2) Thinning algorithm (rectangular array) is used for thinning the digitized fingerprint (binary version). A simple algorithm is also suggested for classifying the fingerprints. Experimental results obtained using such algorithms are presented.
Resumo:
Training for bodybuilding competition is clearly a serious business that inflicts serious demands on the competitor. Not only did Francis commit time and money to compete, but he also arguably put winning before his physical well-being—enduring pain and suffering from his injury. Bodybuilding may seem like an extreme example, but it is not the only activity in which people suffer in pursuit of their goals. Boxers fight each other in the ring; soccer players risk knee and ankle injuries, sometimes playing despite being hurt; and mountaineers risk their lives in dangerous climbs. In the arts there are many examples of people suffering to achieve their goals: Beethoven kept composing, conducting, and performing despite his hearing loss; van Gogh grappled with depression but kept painting, finding fame only posthumously; and Mozart lived the final years of his life impoverished but still composing. These examples show that many great achievements come at a price: severe suffering...
Resumo:
Background Child maltreatment has severe short-and long-term consequences for children’s health, development, and wellbeing. Despite the provision of child protection education programs in many countries, few have been rigorously evaluated to determine their effectiveness. We describe the design of a multi-site gold standard evaluation of an Australian school-based child protection education program. The intervention has been developed by a not-for-profit agency and comprises 5 1-h sessions delivered to first grade students (aged 5–6 years) in their regular classrooms. It incorporates common attributes of effective programs identified in the literature, and aligns with the Australian education curriculum. Methods/Design A three-site cluster randomised controlled trial (RCT) of Learn to be safe with Emmy and friends™ will be conducted with children in approximately 72 first grade classrooms in 24 Queensland primary (elementary) schools from three state regions, over a period of 2 years. Entire schools will be randomised, using a computer generated list of random numbers, to intervention and wait-list control conditions, to prevent contamination effects across students and classes. Data will be collected at baseline (pre-assessment), immediately after the intervention (post-assessment), and at 6-, 12-, and 18-months (follow-up assessments). Outcome assessors will be blinded to group membership. Primary outcomes assessed are children’s knowledge of program concepts; intentions to use program knowledge, skills, and help-seeking strategies; actual use of program material in a simulated situation; and anxiety arising from program participation. Secondary outcomes include a parent discussion monitor, parent observations of their children’s use of program materials, satisfaction with the program, and parental stress. A process evaluation will be conducted concurrently to assess program performance. Discussion This RCT addresses shortcomings in previous studies and methodologically extends research in this area by randomising at school-level to prevent cross-learning between conditions; providing longer-term outcome assessment than any previous study; examining the degree to which parents/guardians discuss intervention content with children at home; assessing potential moderating/mediating effects of family and child demographic variables; testing an in-vivo measure to assess children’s ability to discriminate safe/unsafe situations and disclose to trusted adults; and testing enhancements to existing measures to establish greater internal consistency.
Resumo:
This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.
Resumo:
Generating discriminative input features is a key requirement for achieving highly accurate classifiers. The process of generating features from raw data is known as feature engineering and it can take significant manual effort. In this paper we propose automated feature engineering to derive a suite of additional features from a given set of basic features with the aim of both improving classifier accuracy through discriminative features, and to assist data scientists through automation. Our implementation is specific to HTTP computer network traffic. To measure the effectiveness of our proposal, we compare the performance of a supervised machine learning classifier built with automated feature engineering versus one using human-guided features. The classifier addresses a problem in computer network security, namely the detection of HTTP tunnels. We use Bro to process network traffic into base features and then apply automated feature engineering to calculate a larger set of derived features. The derived features are calculated without favour to any base feature and include entropy, length and N-grams for all string features, and counts and averages over time for all numeric features. Feature selection is then used to find the most relevant subset of these features. Testing showed that both classifiers achieved a detection rate above 99.93% at a false positive rate below 0.01%. For our datasets, we conclude that automated feature engineering can provide the advantages of increasing classifier development speed and reducing development technical difficulties through the removal of manual feature engineering. These are achieved while also maintaining classification accuracy.
Resumo:
We present the results on the distribution and kinematics of HI gas with higher sensitivity and in one case of higher spectral resolution as well than reported earlier, of three irregular galaxies CGCG 097073, 097079 and 097087 (UGC 06697) in the cluster Abell 1367. These galaxies are known to exhibit long (50 - 75 kpc) tails of radio continuum and optical emission lines (H alpha) pointing away from the cluster centre and arcs of starformation on the opposite sides of the tails, These features as well as the HI properties, with two of the galaxies (CGCG 097073 and 097079) exhibiting sharper gradients in HI intensity on the side of the tails, are consistent with the HI gas being affected by the ram pressure of the intracluster medium. However the HI emission in all the three galaxies extends to much smaller distances than the radio-continuum and H alpha tails, and are possibly still bound to the parent galaxies. Approximately 20 - 30 per cent of the HI mass is seen to accumulate on the downstream side due to the effects of ram pressure.
Resumo:
In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
Background The leading causes of morbidity and mortality for people in high-income countries living with HIV are now non-AIDS malignancies, cardiovascular disease and other non-communicable diseases associated with ageing. This protocol describes the trial of HealthMap, a model of care for people with HIV (PWHIV) that includes use of an interactive shared health record and self-management support. The aims of the HealthMap trial are to evaluate engagement of PWHIV and healthcare providers with the model, and its effectiveness for reducing coronary heart disease risk, enhancing self-management, and improving mental health and quality of life of PWHIV. Methods/Design The study is a two-arm cluster randomised trial involving HIV clinical sites in several states in Australia. Doctors will be randomised to the HealthMap model (immediate arm) or to proceed with usual care (deferred arm). People with HIV whose doctors are randomised to the immediate arm receive 1) new opportunities to discuss their health status and goals with their HIV doctor using a HealthMap shared health record; 2) access to their own health record from home; 3) access to health coaching delivered by telephone and online; and 4) access to a peer moderated online group chat programme. Data will be collected from participating PWHIV (n = 710) at baseline, 6 months, and 12 months and from participating doctors (n = 60) at baseline and 12 months. The control arm will be offered the HealthMap intervention at the end of the trial. The primary study outcomes, measured at 12 months, are 1) 10-year risk of non-fatal acute myocardial infarction or coronary heart disease death as estimated by a Framingham Heart Study risk equation; and 2) Positive and Active Engagement in Life Scale from the Health Education Impact Questionnaire (heiQ). Discussion The study will determine the viability and utility of a novel technology-supported model of care for maintaining the health and wellbeing of people with HIV. If shown to be effective, the HealthMap model may provide a generalisable, scalable and sustainable system for supporting the care needs of people with HIV, addressing issues of equity of access. Trial registration Universal Trial Number (UTN) U111111506489; ClinicalTrial.gov Id NCT02178930 submitted 29 June 2014
Resumo:
Background There is a strong link between antibiotic consumption and the rate of antibiotic resistance. In Australia, the vast majority of antibiotics are prescribed by general practitioners, and the most common indication is for acute respiratory infections. The aim of this study is to assess if implementing a package of integrated, multifaceted interventions reduces antibiotic prescribing for acute respiratory infections in general practice. Methods/design This is a cluster randomised trial comparing two parallel groups of general practitioners in 28 urban general practices in Queensland, Australia: 14 intervention and 14 control practices. The protocol was peer-reviewed by content experts who were nominated by the funding organization. This study evaluates an integrated, multifaceted evidence-based package of interventions implemented over a six month period. The included interventions, which have previously been demonstrated to be effective at reducing antibiotic prescribing for acute respiratory infections, are: delayed prescribing; patient decision aids; communication training; commitment to a practice prescribing policy for antibiotics; patient information leaflet; and near patient testing with C-reactive protein. In addition, two sub-studies are nested in the main study: (1) point prevalence estimation carriage of bacterial upper respiratory pathogens in practice staff and asymptomatic patients; (2) feasibility of direct measures of antibiotic resistance by nose/throat swabbing. The main outcome data are from Australia’s national health insurance scheme, Medicare, which will be accessed after the completion of the intervention phase. They include the number of antibiotic prescriptions and the number of patient visits per general practitioner for periods before and during the intervention. The incidence of antibiotic prescriptions will be modelled using the numbers of patients as the denominator and seasonal and other factors as explanatory variables. Results will compare the change in prescription rates before and during the intervention in the two groups of practices. Semi-structured interviews will be conducted with the general practitioners and practice staff (practice nurse and/or practice manager) from the intervention practices on conclusion of the intervention phase to assess the feasibility and uptake of the interventions. An economic evaluation will be conducted to estimate the costs of implementing the package, and its cost-effectiveness in terms of cost per unit reduction in prescribing. Discussion The results on the effectiveness, cost-effectiveness, acceptability and feasibility of this package of interventions will inform the policy for any national implementation.
Resumo:
A system of many coupled oscillators on a network can show multicluster synchronization. We obtain existence conditions and stability bounds for such a multicluster synchronization. When the oscillators are identical, we obtain the interesting result that network structure alone can cause multicluster synchronization to emerge even when all the other parameters are the same. We also study occurrence of multicluster synchronization when two different types of oscillators are coupled.
Resumo:
X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.
Resumo:
The increased availability of image capturing devices has enabled collections of digital images to rapidly expand in both size and diversity. This has created a constantly growing need for efficient and effective image browsing, searching, and retrieval tools. Pseudo-relevance feedback (PRF) has proven to be an effective mechanism for improving retrieval accuracy. An original, simple yet effective rank-based PRF mechanism (RB-PRF) that takes into account the initial rank order of each image to improve retrieval accuracy is proposed. This RB-PRF mechanism innovates by making use of binary image signatures to improve retrieval precision by promoting images similar to highly ranked images and demoting images similar to lower ranked images. Empirical evaluations based on standard benchmarks, namely Wang, Oliva & Torralba, and Corel datasets demonstrate the effectiveness of the proposed RB-PRF mechanism in image retrieval.