954 resultados para citizen mobilization
Resumo:
Although the catalytic (C) subunit of cAMP-dependent protein kinase is N-myristylated, it is a soluble protein, and no physiological role has been identified for its myristyl moiety. To determine whether the interaction of the two regulatory (R) subunit isoforms (RI and RII) with the N-myristylated C subunit affects its ability to target membranes, the effect of N-myristylation and the RI and RII subunit isoforms on C subunit binding to phosphatidylcholine/phosphatidylserine liposomes was examined. Only the combination of N-myristylation and RII subunit interaction produced a dramatic increase in the rate of liposomal binding. To assess whether the RII subunit also increased the conformational flexibility of the C subunit N terminus, the effect of N-myristylation and the RI and RII subunits on the rotational freedom of the C subunit N terminus was measured. Specifically, fluorescein maleimide was conjugated to Cys-16 in the N-terminal domain of a K16C mutant of the C subunit, and the time-resolved emission anisotropy was determined. The interaction of the RII subunit, but not the RI subunit, significantly increased the backbone flexibility around the site of mutation and labeling, strongly suggesting that RII subunit binding to the myristylated C subunit induced a unique conformation of the C subunit that is associated with an increase in both the N-terminal flexibility and the exposure of the N-myristate. RII subunit thus appears to serve as an intermolecular switch that disrupts of the link between the N-terminal and core catalytic domains of the C subunit to expose the N-myristate and poise the holoenzyme for interaction with membranes.
Mapping species distributions : A comparison of skilled naturalist and lay citizen science recording
Resumo:
Acknowledgements We are grateful to Elaine O’Mahony, Imogen Pearce, Richard Comont, Anthony McCluskey and other BBCT staff for the many hours of BeeWatch species identification and for all people who submitted sightings to BeeWatch, OPAL, BWARS and the various local recording schemes and societies. We thank the NBN for allowing us to download the bumblebee records without strings attached, and the Essex, Greater London, Cumbria and Sussex based recording centres for providing records upon request. Finally, we are indebted to Tom August and two anonymous reviewers for their valuable critique on an earlier version of this work.
Resumo:
© 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Acknowledgments The authors thank H. H. Nguyen for his early development work on the BeeWatch interface; E. O'Mahony, I. Pearce, and R. Comont for identifying numerous photographed bumblebees; B. Darvill, D. Ewing, and G. Perkins for enabling our partnership with the Bumblebee Conservation Trust; and S. Blake for his investments in developing the NLG feedback. The study was part of the Digital Conservation project of dot.rural, the University of Aberdeen's Digital Economy Research Hub, funded by RCUK (grant reference EP/G066051/1).
Resumo:
The interactions between calmodulin, inositol 1,4,5-trisphosphate (InsP3), and pure cerebellar InsP3 receptors were characterized by using a scintillation proximity assay. In the absence of Ca2+, 125I-labeled calmodulin reversibly bound to multiple sites on InsP3 receptors and Ca2+ increased the binding by 190% ± 10%; the half-maximal effect occurred when the Ca2+ concentration was 184 ± 14 nM. In the absence of Ca2+, calmodulin caused a reversible, concentration-dependent (IC50 = 3.1 ± 0.2 μM) inhibition of [3H]InsP3 binding by decreasing the affinity of the receptor for InsP3. This effect was similar at all Ca2+ concentrations, indicating that the site through which calmodulin inhibits InsP3 binding has similar affinities for calmodulin and Ca2+-calmodulin. Calmodulin (10 μM) inhibited the Ca2+ release from cerebellar microsomes evoked by submaximal, but not by maximal, concentrations of InsP3. Tonic inhibition of InsP3 receptors by the high concentrations of calmodulin within cerebellar Purkinje cells may account for their relative insensitivity to InsP3 and limit spontaneous activation of InsP3 receptors in the dendritic spines. Inhibition of InsP3 receptors by calmodulin at all cytosolic Ca2+ concentrations, together with the known redistribution of neuronal calmodulin evoked by protein kinases and Ca2+, suggests that calmodulin may also allow both feedback control of InsP3 receptors and integration of inputs from other signaling pathways.
Resumo:
Langerhans cells are a subset of dendritic cells (DCs) found in the human epidermis with unique morphological and molecular properties that enable their function as “sentinels” of the immune system. DCs are pivotal in the initiation and regulation of primary MHC class I restricted T lymphocyte immune responses and are able to present both endogenous and exogenous antigen onto class I molecules. Here, we study the MHC class I presentation pathway following activation of immature, CD34-derived human Langerhans cells by lipopolysaccharide (LPS). LPS induces an increase in all components of the MHC class I pathway including the transporter for antigen presentation (TAP), tapasin and ERp57, and the immunoproteasome subunits LMP2 and LMP7. Moreover, in CD34-derived Langerhans cells, the rapid increase in expression of MHC class I molecules seen at the cell surface following LPS activation is because of mobilization of MHC class I molecules from HLA-DM positive endosomal compartments, a pathway not seen in monocyte-derived DCs. Mobilization of class I from this compartment is primaquine sensitive and brefeldin A insensitive. These data demonstrate the regulation of the class I pathway in concert with the maturation of the CD34-derived Langerhans cells and suggest potential sites for antigen loading of class I proteins.
Resumo:
Critical to homeostasis of blood cell production by hematopoietic stem/progenitor (HSC/P) cells is the regulation of HSC/P retention within the bone marrow microenvironment and migration between the bone marrow and the blood. Key extracellular regulatory elements for this process have been defined (cell–cell adhesion, growth factors, chemokines), but the mechanism by which HSC/P cells reconcile multiple external signals has not been elucidated. Rac and related small GTPases are candidates for this role and were studied in HSC/P deficient in Rac2, a hematopoietic cell-specific family member. Rac2 appears to be critical for HSC/P adhesion both in vitro and in vivo, whereas a compensatory increase in Cdc42 activation regulates HSC/P migration. This genetic analysis provides physiological evidence of cross-talk between GTPase proteins and suggests that a balance of these two GTPases controls HSC/P adhesion and mobilization in vivo.
Resumo:
Biosynthesis of sucrose from triacylglycerol requires the bypass of the CO2-evolving reactions of the tricarboxylic acid (TCA) cycle. The regulation of the TCA cycle bypass during lipid mobilization was examined. Lipid mobilization in Brassica napus was initiated shortly after imbibition of the seed and proceeded until 2 d postimbibition, as measured by in vivo [1-14C]acetate feeding to whole seedlings. The activity of NAD+-isocitrate dehydrogenase (a decarboxylative enzyme) was not detected until 2 d postimbibition. RNA-blot analysis of B. napus seedlings demonstrated that the mRNA for NAD+-isocitrate dehydrogenase was present in dry seeds and that its level increased through the 4 d of the experiment. This suggested that NAD+-isocitrate dehydrogenase activity was regulated by posttranscriptional mechanisms during early seedling development but was controlled by mRNA level after the 2nd or 3rd d. The activity of fumarase (a component of the nonbypassed section of the TCA cycle) was low but detectable in B. napus seedlings at 12 h postimbibition, coincident with germination, and increased for the next 4 d. RNA-blot analysis suggested that fumarase activity was regulated primarily by the level of its mRNA during germination and early seedling development. It is concluded that posttranscriptional regulation of NAD+-isocitrate dehydrogenase activity is one mechanism of restricting carbon flux through the decarboxylative section of the TCA cycle during lipid mobilization in germinating oilseeds.
Resumo:
The etiolated germination process of oilseed plants is characterized by the mobilization of storage lipids, which serve as a major carbon source for the seedling. We found that during early stages of germination in cucumber, a lipoxygenase (linoleate: oxygen oxidoreductase, EC 1.13.11.12) form is induced that is capable of oxygenating the esterified fatty acids located in the lipid-storage organelles, the so-called lipid bodies. Large amounts of esterified (13S)-hydroxy-(9Z,11E)-octadecadienoic acid were detected in the lipid bodies, whereas only traces of other oxygenated fatty acid isomers were found. This specific product pattern confirms the in vivo action of this lipoxygenase form during germination. Lipid fractionation studies of lipid bodies indicated the presence of lipoxygenase products both in the storage triacylglycerols and, to a higher extent, in the phospholipids surrounding the lipid stores as a monolayer. The degree of oxygenation of the storage lipids increased drastically during the time course of germination. We show that oxygenated fatty acids are preferentially cleaved from the lipid bodies and are subsequently released into the cytoplasm. We suggest that they may serve as substrate for beta-oxidation. These data suggest that during the etiolated germination, a lipoxygenase initiates the mobilization of storage lipids. The possible mechanisms of this implication are discussed.
Resumo:
Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.
Resumo:
Preventing the introduction of aquatic invasive species (AIS) like zebra and quagga mussels in the U.S. is a high priority. This Capstone demonstrates zebra and quagga mussels are of concern as aquatic invasive species and a volunteer monitoring and intervention program is an effective means for early detection of AIS. This Capstone developed an AIS citizen volunteer lake monitoring program consistent with other programs concerned about AIS prevention and early detection. This Capstone concludes implementing such a voluntary program will help reduce the spread of zebra and quagga mussels and will provide early detection information to appropriate agencies empowered with response actions if species are found.
Resumo:
An extensive and growing road system in the United States bisects vital wildlife habitat and is causing deleterious ecological effects on many wildlife species. The primary impacts include collisions between wildlife and vehicles, altered movement patterns within habitat, and/or the complete blockage of movements between vital habitats. The increasing size of the road network and number of vehicles will only intensify the problem unless proactive wildlife mitigation measures are developed to minimize these adverse effects. Therefore, this capstone project examines the role of citizen advocacy for promoting wildlife protection in the planning and development of wildlife-sensitive transportation projects in the United States. Based upon a data analysis of 21 questionnaires from qualified participants, it was determined that citizen participation is an important component associated with the development of wildlife-sensitive transportation projects. However, four major barriers to facilitating effective citizen participation processes were identified. 1) A lack of awareness. Citizens are only minimally aware of wildlife and transportation issues, including: a) the ecological impacts of roads, b) the solutions available to mitigate these impacts, and c) the opportunities to advocate for the protection of wildlife during transportation planning processes; 2) Public apathy or a lack of citizen interest in wildlife and transportation issues; 3) Ineffective citizen participation techniques and processes; and 4) Poor communication with citizens. Four recommendations were provided to assist in overcoming these barriers and to help define a better role for citizen advocacy in protecting wildlife from the growing road network.
Resumo:
This article shows how the cognitive mobilization index, designed for use in observing potential political participation, can be used as an indicator of the political climate that a particular society is going through. Following a discussion of the theoretical elaborations (and their working definitions) of the concept of cognitive mobilization, a longitudinal study of various European countries is used to consider the question of how political crises influence cognitive mobilization indexes and what effects they have on the political socialization process among the youngest cohorts.
Resumo:
From the Introduction. One innovative element of the Lisbon Treaty was the creation of a European Citizens’ Initiative (ECI). At the time, this was sometimes hailed as a fundamental change in the European institutional system. A few years after the entry into force of the Treaty, however, much less is heard about this “first truly transnational instrument of modern direct democracy”, this “revolution in disguise”, this “very innovative and symbolic” provision. This could seem surprising at first sight. Since the entry into force of the Treaty, the implementation of this provision has been remarkably rapid. Meanwhile, new arguments have risen concerning the lack of democratic legitimacy of the European Union, and the lack of connection between the European institutions and the citizens.