980 resultados para catalysis and electrocatalysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to develop 3-acyl prodrugs of the potent analgesic morphine-6-sulfate (M6S). These are expected to have higher potency and/or exhibit longer duration of analgesic action than the parent compound. M6S and the prodrugs were synthesized, then purified either by recrystallization or by semi-preparative HPLC and the structures confirmed by mass spectrometry, IR spectrophotometry and by detailed 1- and 2-D NMR studies. The lipophilicities of the compounds were assessed by a combination of shake-flask, group contribution and HPLC retention methods. The octanol-buffer partition coefficient could only be obtained directly for 3-heptanoylmorphine-6-sulfate, using the shake-flask method. The partition coefficients (P) for the remaining prodrugs were estimated from known methylene group contributions. A good linear relationship between log P and the HPLC log capacity factors was demonstrated. Hydrolysis of the 3-acetyl prodrug, as a representative of the group, was found to occur relatively slowly in buffers (pH range 6.15-8.01), with a small buffer catalysis contribution. The rates of enzymatic hydrolysis of the 3-acyl group in 10% rat blood and in 10% rat brain homogenate were investigated. The prodrugs followed apparent first order hydrolysis kinetics, with a significantly faster hydrolysis rate found in 10% rat brain homogenate than in 10% rat blood for all compounds. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic conversion of N2O to N-2 over Cu- and Co-impregnated activated carbon catalysts (Cu/AC and Co/AC) was investigated. Catalytic activity measurements were carried out in a fixed-bed flow reactor at atmospheric pressure. The catalysts were characterized by N-2 adsorption, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). This study aimed to provide insights into the following aspects: the metal dispersion, changes in pore structure, influence of catalyst loading on reaction, and reaction mechanism. Increasing loading of Co or Cu led to decreasing dispersion, but 20 wt % loading was an upper limit for optimal activities in both cases, with too high loading causing sintering of metal. Co exhibited a relatively better dispersion than Cu. Impregnation of metal led to a large decrease in surface area and pore volume, especially for 30 wt % of loading. 20 wt % of loading has proved to be the optimum for both Cu and Co, which shows the highest activity. Both N2O-Co/AC and -Cu/AC reactions are based upon a redox mechanism, but the former is limited by the oxygen transfer from catalysts to carbon, while N2O chemisorption on the surface of Cu catalyst controls the latter. The removal of oxygen from cobalt promotes the activity of Co/AC, but it is beneficial for Cu/AC to keep plenty of oxygen to maintain the intermediate oxidation of copper-Cu1+. The different nature of the two catalysts and their catalytic reaction mechanisms are closely related to their different electronegativities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of carbonaceous adsorbents were prepared by carbonisation at 600 degrees C following acidic oxidation under various conditions. Effects of the chemical nature of the precursor, such as the ratio of aromatic to aliphatic carbons and oxygen content, on the chemical and structural characteristics of the resultant chars were investigated using C-13 NMR and Raman spectroscopy, respectively. The C-13 NMR spectral parameters of the coal samples show that as the severity of oxidation conditions increased, the ratio of aromatic to aliphatic carbons increased. Furthermore, it was also found that the amount of disorganised carbon affects both the pore structure and the adsorption properties of carbonaceous adsorbents. It is demonstrated that higher amount of the disorganised carbon indicates smaller micropore size. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influences of HCl, HNO3 and HF treatments of carbon on N2O and NO reduction with 20 wt% Cu-loaded activated carbon were studied. The order of activity in both N2O and NO is as follows: Cu20/AC-HNO3>Cu20/AC>Cu20/AC-HF>Cu20/AC-HCl. The same sequence was also observed for the amount of CO2 evolved during TPD experiments of supports acid for the catalyst dispersion. On the other hand, N2O exhibited a higher reaction rate than NO and a higher sensitivity to acid treatments, and the presence of gas-phase O-2 had opposite effects in N2O and NO reduction. The key role of carbon surface chemistry is examined to rationalize these findings and the relevant mechanistic and practical implications are discussed. The effects of oxygen surface groups on the pore structure of supports and catalysts are also analyzed, (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous Mobil catalytic materials of number 41 (MCM-41) silica was chemically modified using both inorganic and organic precursors and characterized using the techniques, XRD, XPS, MAS NMR, FTIR, W-Vis, and physical adsorption of nitrogen, hydrocarbons (hexane, benzene, acetone, and methanol) and water vapor. Modification using organic reagents was found to result in a significant loss in porosity and a shape change of surface properties (increased hydrophobicity and decreased acidity). With inorganic modifying reagents, the decrease in porosity was also observed while the surface properties were not significantly altered as reflected by the adsorption isotherms of organics and water vapors. Chemical modifications can greatly improve the hydrothermal stability of MCM-41 material because of the enhanced surface hydrophobicity (with organic modifiers) or increased pore wall thickness (with inorganic modifiers). (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal oxide pillared clay (PILC) possesses several interesting properties, such as large surface area, high pore volume and tunable pore size (from micropore to mesopore), high thermal stability, strong surface acidity and catalytic active substrates/metal oxide pillars. These unique characteristics make PILC an attractive material in catalytic reactions. It can be made either as catalyst support or directly used as catalyst. This paper is a continuous work from Kloprogge's review (J.T. Kloprogge, J. Porous Mater. 5, 5 1998) on the synthesis and properties of smectites and related PILCs and will focus on the diverse applications of clay pillared with different types of metal oxides in the heterogeneous catalysis area and adsorption area. The relation between the performance of the PILC and its physico-chemical features will be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primidone (PRM) oxidation by various oxidants such as iodosylbenzene (PhIO), tert-butyl hydroperoxide 70wt.% (t-BOOH), 3-chloroperoxybenzoic acid (m-CPBA) and hydrogen peroxide 30wt.%, mediated by either a salen complex or metalloporphyrins, was investigated. The catalytic systems led to phenylethyl-malondiamide (PEMA) and phenobarbital (FEND), the same metabolites obtained in vivo with P450 enzymes, although three other products were also detected. Product formation was highly dependent on the oxidant, co-catalyst (imidazole), pH and dioxygen. These biomimetic chemical models have potential application in the synthesis of drug metabolites. which should provide samples for pharmacological tests. They can also be employed in studies that pursue the elucidation of in vivo drug metabolism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly efficient two-step method for the synthesis of pyranoquinoline derivatives from imino-Diels-Alder reactions between aldimines and 3,4-dihydro-2H-pyran using niobium(V) chloride as catalyst under mild conditions is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we describe the characterization of the complex [Fe(tpy-NH2)(2)](PF6)(2) (tpy-NH2 = bis[4`-(3-aminophenyl)-2, 2`:6`,2 ``-terpyridine]. The complex was oxidatively electropolymerized on glassy.-carbon electrodes in CH3CN/0.1 M tetraethylammonium perchlorate (TEAP) to generate polymer films that exhibit reversible oxidative electrochemical behavior in a wide potential range (0.0-1.6 V), as well as high conductivity and stability/durability. In situ spectrocyclic voltammetry of this modified electrode was carried out on a photodiode array spectrophotometer attached to a potentiostat, which provided UV-Vis absorption spectra of the redox species during the potential sweep. We determined charge transport parameters as a function of time and thickness of the modified electrode, and the results showed that poly-[[Fe(tpy-NH2)(2)](2+)](n) can be made to exhibit three regimes of charge transport behavior by manipulation of the film thickness and the experimental time-scale. Morphological characterization of the film was provided by atomic force microscopy. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under ""solvent free"" conditions and promoted by MW (microwave) irradiation. A ""two sites"" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the catalytic activity of manganese and iron porphyrins, Mn and Fe(TFPP)Cl, covalently immobilized on the aminofunctionalized supports montmorillonite K-10 (MontX) and silica (SilX), where X= 1 or 2 represents the length of the organic chain (""arms"") binding the metalloporphyrin to the support. These systems were characterized by UV-vis and Electronic Paramagnetic Resonance (EPR), and they were used as catalysts in the oxidation of carbamazepine (CBZ) by the oxidants iodosylbenzene (PhIO) and hydrogen peroxide. The manganese porphyrin (MnP) catalysts proved to be efficient and selective for the epoxide, the main CBZ metabolite in natural systems. MnMont1 was an excellent catalyst when PhIO was used as oxidant, even better than the same MnP in homogeneous system. Supports bearing short ""arms"" led to the best yields. Although H2O2 is an environmentally friendly oxidant, low product yields were obtained when it was employed in CBZ oxidation. Fe(TFPP)CI immobilized on aminofunctionalized supports was not an efficient catalyst, probably due to the presence of Fe(H) species in the matrix, which led to the less reactive intermediate PFe(IV)(O). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different compositions of Pt, PtNi, PtSn, and PtSnNi electrocatalysts supported on carbon Vulcan XC-72 were prepared through thermal decomposition of polymeric precursors. The nanoparticles were characterized by morphological and structural analyses (XRD, TEM, and EDX). XRD results revealed a face-centered cubic structure for platinum, and there was evidence that Ni and Sn atoms are incorporated into the Pt structure. The electrochemical investigation was carried out in slightly acidic medium (H(2)SO(4) 0.05 mol L(-1)), in the absence and in the presence of ethanol. Addition of Ni to Pt/C and PtSn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials, thus enhancing the catalytic activity, especially in the case of the ternary PtSnNi/C composition. Electrolysis of ethanol solutions at 0.4 V us. RHE allowed for determination of acetaldehyde and acetic acid as the reaction products, as detected by HPLC analysis. Due to the high concentration of ethanol employed in the electrolysis experiments (1.0 mol L(-1)), no formation of CO(2) was observed. Copyright (C) 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a new oxovanadium(IV)-cucurbit[6]uril complex, which combines the catalytic properties of the metal ion with the size-excluding properties of the macrocycle cavity. In this coordination compound, the VO(2-) ions are coordinated to the oxygen atoms located at the rim of the macrocycle in slightly distorted square-pyramidal configurations, which are in fact C(2v) symmetries. This combination results in a size-selective heterogeneous catalyst, which is able to oxidize linear alkanes like n-pentane at room temperature, but not styrene, cyclohexane or z-cyclooctene, which are too big to enter the cucurbit[6]uril cavity. The results presented here contribute to understanding the mechanism of alkane catalytic oxidation by oxovanadium(IV) complexes. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.