926 resultados para bone morphogenetic protein receptor 1B


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Bone morphogenetic protein (BMP) is a potent differentiating agent for cells of the osteoblastic lineage. It has been used in the oral cavity under a variety of indications and with different carriers. However, the optimal carrier for each indication is not known. This study examined a synthetic bioabsorbable carrier for BMP used in osseous defects around dental implants in the canine mandible. METHODS: Twelve canines had their mandibular four premolars and first molar teeth extracted bilaterally. After 5 months, four implants were placed with standardized circumferential defects around the coronal 4 mm of each implant. One-half of the defects received a polylactide/glycolide (PLGA) polymer carrier with or without recombinant human BMP-2 (rhBMP-2), and the other half received a collagen carrier with or without rhBMP-2. Additionally, one-half of the implants were covered with a non-resorbable (expanded polytetrafluoroethylene [ePTFE]) membrane to exclude soft tissues. Animals were sacrificed either 4 or 12 weeks later. Histomorphometric analysis included the percentage of new bone contact with the implant, the area of new bone, and the percentage of defect fill. This article describes results with the PLGA carrier. RESULTS: All implants demonstrated clinical and radiographic success with the amount of new bone formed dependent on the time and presence/absence of rhBMP-2 and presence/absence of a membrane. The percentage of bone-to-implant contact was greater with rhBMP-2, and after 12 weeks of healing, there was approximately one-third of the implant contacting bone in the defect site. After 4 weeks, the presence of a membrane appeared to slow new bone area formation. The percentage of fill in membrane-treated sites with rhBMP-2 rose from 24% fill to 42% after 4 and 12 weeks, respectively. Without rhBMP-2, the percentage of fill was 14% rising to 36% fill, respectively. CONCLUSIONS: After 4 weeks, the rhBMP-2-treated sites had a significantly higher percentage of contact, more new bone area, and higher percentage of defect fill than the sites without rhBMP-2. After 12 weeks, there was no significant difference in sites with or without rhBMP-2 regarding percentage of contact, new bone area, or percentage of defect fill. In regard to these three outcomes, comparing the results with this carrier to the results reported earlier with a collagen carrier in this study, only the area of new bone was significantly different with the collagen carrier resulting in greater bone than the PLGA carrier. Thus, the PLGA carrier for rhBMP-2 significantly stimulated bone formation around dental implants in this model after 1 month but not after 3 months of healing. The use of this growth factor and carrier combination appears to stimulate early bone healing events around the implants but not quite to the same degree as a collagen carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteogenic agents, such as bone morphogenetic protein-2 (BMP-2), can stimulate the degradation as well as the formation of bone. Hence, they could impair the osteoconductivity of functionalized implant surfaces. We assessed the effects of BMP-2 and its mode of delivery on the osteoconductivity of dental implants with either a naked titanium surface or a calcium-phosphate-coated one. The naked titanium surface bore adsorbed BMP-2, whilst the coated one bore incorporated, adsorbed, or incorporated and adsorbed BMP-2. The implants were inserted into the maxillae of adult miniature pigs. The volume of bone deposited within a defined "osteoconductive" (peri-implant) space, and bone coverage of the implant surface delimiting this space, were estimated morphometrically 1-3 weeks later. After 3 weeks, the volume of bone deposited within the osteoconductive space was highest for coated and uncoated implants bearing no BMP-2, followed by coated implants bearing incorporated BMP-2; it was lowest for coated implants bearing only adsorbed BMP-2. Bone-interface coverage was highest for coated implants bearing no BMP-2, followed by coated implants bearing either incorporated, or incorporated and adsorbed BMP-2; it was lowest for uncoated implants bearing adsorbed BMP-2. Hence, the osteoconductivity of implant surfaces can be significantly modulated by BMP-2 and its mode of delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone healing may be improved in implant patients by the administration of osteogenic agents, such as bone morphogenetic protein 2 (BMP-2). But the efficacy of BMP-2 depends upon its mode of application. We hypothesized that BMP-2 is capable of a higher osteogenic efficacy when delivered physiologically, viz., when incorporated into a calcium-phosphate carrier that mimics mineralized bone matrix, than when administered via simple pharmacological modes, such as by adsorption onto a carrier surface. Using an ectopic rat model, we compared the osteoinductive efficacies of calcium-phosphate implant-coatings bearing either incorporated, adsorbed, or incorporated and adsorbed BMP-2. When adsorbed directly onto the naked implant surface, BMP-2 was not osteogenic. When adsorbed onto a calcium-phosphate coating, it was osteoinductive, but not highly efficacious. When BMP-2 was incorporated into calcium-phosphate coatings, it was a potent bone-inducer, whose efficacy was compromised, not potentiated, by the additional deposition of an adsorbed pool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In a recent study, we demonstrated that mesenchymal stem cells (MSCs) derived from the synovial membranes of bovine shoulder joints could differentiate into chondrocytes when cultured in alginate. The purpose of the present study was to establish the conditions under which synovial MSCs derived from aging human donors can be induced to undergo chondrogenic differentiation using the same alginate system. METHODS: MSCs were obtained by digesting the knee-joint synovial membranes of osteoarthritic human donors (aged 59-76 years), and expanded in monolayer cultures. The cells were then seeded at a numerical density of 4x10(6)/ml within discs of 2% alginate, which were cultured in serum-containing or serum-free medium (the latter being supplemented with 1% insulin, transferrin, selenium (ITS). The chondrogenic differentiation capacity of the cells was tested by exposing them to the morphogens transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, insulin-like growth factor-1 (IGF-1), bone morphogenetic protein-2 (BMP-2) and BMP-7, as well as to the synthetic glucocorticoid dexamethasone. The relative mRNA levels of collagen types I and II, of aggrecan and of Sox9 were determined quantitatively by the real-time polymerase chain reaction (PCR). The extracellular deposition of proteoglycans was evaluated histologically after staining with Toluidine Blue, and that of type-II collagen by immunohistochemistry. RESULTS: BMP-2 induced the chondrogenic differentiation of human synovial MSCs in a dose-dependent manner. The response elicited by BMP-7 was comparable. Both of these agents were more potent than TGF-beta1. A higher level of BMP-2-induced chondrogenic differentiation was achieved in the absence than in the presence of serum. In the presence of dexamethasone, the BMP-2-induced expression of mRNAs for aggrecan and type-II collagen was suppressed; the weaker TGF-beta1-induced expression of these chondrogenic markers was not obviously affected. CONCLUSIONS: We have demonstrated that synovial MSCs derived from the knee joints of aging human donors possess chondrogenic potential. Under serum-free culturing conditions and in the absence of dexamethasone, BMP-2 and BMP-7 were the most potent inducers of this transformation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The objective of the study was to evaluate tissue reactions such as bone genesis, cartilage genesis and graft materials in the early phase of lumbar intertransverse process fusion in a rabbit model using computed tomography (CT) imaging with CT intensity (Hounsfield units) measurement, and to compare these data with histological results. MATERIALS AND METHODS: Lumbar intertransverse process fusion was performed on 18 rabbits. Four graft materials were used: autograft bone (n = 3); collagen membrane soaked with recombinant human bone morphogenetic protein-2 (rhBMP-2) (n = 5); granular calcium phosphate (n = 5); and granular calcium phosphate coated with rhBMP-2 (n = 5). All rabbits were euthanized 3 weeks post-operatively and lumbar spines were removed for CT imaging and histological examination. RESULTS: Computed tomography imaging demonstrated that each fusion mass component had the appropriate CT intensity range. CT also showed the different distributions and intensities of bone genesis in the fusion masses between the groups. Each component of tissue reactions was identified successfully on CT images using the CT intensity difference. Using CT color mapping, these observations could be easily visualized, and the results correlated well with histological findings. CONCLUSIONS: The use of CT intensity is an effective approach for observing and comparing early tissue reactions such as newly synthesized bone, newly synthesized cartilage, and graft materials after lumbar intertransverse process fusion in a rabbit model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: According to recent reports, the synovial membrane may contain mesenchymal stem cells with the potential to differentiate into chondrocytes under appropriate conditions. In order to assess the usefulness of synovium-derived progenitor cells for the purposes of cartilage tissue engineering, we explored their requirements for the expression of chondrocyte-specific genes after expansion in vitro. DESIGN: Mesenchymal progenitor cells were isolated from the synovial membranes of bovine shoulder joints and expanded in two-dimensions on plastic surfaces. They were then seeded either as micromass cultures or as single cells within alginate gels, which were cultured in serum-free medium. Under these three-dimensional conditions, chondrogenesis is known to be supported and maintained. Cell cultures were exposed either to bone morphogenetic protein-2 (BMP-2) or to isoforms of transforming growth factor-beta (TGF-beta). The levels of mRNA for Sox9, collagen types I and II and aggrecan were determined by RT-PCR. RESULTS: When transferred to alginate gel cultures, the fibroblast-like synovial cells assumed a rounded form. BMP-2, but not isoforms of TGF-beta, stimulated, in a dose-dependent manner, the production of messenger RNAs (mRNAs) for Sox9, type II collagen and aggrecan. Under optimal conditions, the expression levels of cartilage-specific genes were comparable to those within cultured articular cartilage chondrocytes. However, in contrast to cultured articular cartilage chondrocytes, synovial cells exposed to BMP-2 continued to express the mRNA for alpha1(I) collagen. CONCLUSIONS: This study demonstrates that bovine synovium-derived mesenchymal progenitor cells can be induced to express chondrocyte-specific genes. However, the differentiation process is not complete under the chosen conditions. The stimulation conditions required for full transformation must now be delineated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. METHODOLOGY/PRINCIPAL FINDINGS Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. CONCLUSIONS/SIGNIFICANCE TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of the craniofacial skeleton, such as the skull vault, mandible and midface, develops through direct, intramembranous ossification of the cranial neural crest (CNC) derived progenitor cells. Bmp-signaling plays critical roles in normal craniofacial development, and Bmp4 deficiency results in craniofacial abnormalities, such as cleft lip and palate. We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in the CNC. Conditional Bmp4 overexpression, using a tetracycline regulated Bmp4 gain of function allele, resulted in facial form changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4 induced genes (BIG) composed predominantly of transcriptional regulators controlling self-renewal, osteoblast differentiation, and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4, and Bmp7, resulted in complete or partial loss of multiple CNC derived skeletal elements revealing a critical requirement for Bmp-signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss of function mutants indicating similar Bmp-regulated target genes underlying facial form modulation and normal skeletal morphogenesis. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45g and Gata3 that was bound by Smad1/5 in the developing mandible revealing direct, Smad-mediated regulation. These data indicate that Bmp-signaling regulates craniofacial skeletal development and facial form by balancing self-renewal and differentiation pathways in CNC progenitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During early mouse neural development, bone morphogenetic protein (BMP) signaling patterns the dorsal neural tube and defines distinct neural progenitor cell domains along the dorsoventral axis. Unlike the ventral signaling molecule Sonic hedgehog, which has long-range activity by establishing a concentration gradient in the ventral neural tube, these dorsally expressed BMPs appear to have a limited domain of action. This raises questions as to how BMP activity is restricted locally and how restricted BMP signaling directs dorsal neural patterning and differentiation. I hypothesize that BMPs are restricted in the dorsal neural tube for correct dorsoventral patterning. ^ Previous studies have shown that the positively charged basic amino acids located at the N-terminus of several BMPs are essential for heparin binding and diffusion. This provides a novel tool to address these questions. Here I adapted a UAS/GAL4 bigenic mouse system to control the ectopic expression of BMP4 and a mutant form of BMP4 that lacks a subset of the N-terminal basic amino acids. The target genes, UAS-Bmp4 and UAS-mBmp4 , were introduced into the Hprt locus by gene targeting in mouse embryonic stem cells. The expression of the GAL4 transactivator was driven by a roof plate specific Wnt1 promoter. ^ The bigenic mouse embryos exhibit phenotype variations, ranging from mid/hindbrain defects, hemorrhage, and eye abnormalities to vasculture formation. Embryonic death starts around E11.5 because of severe hemorrhage. The different expression levels of the activated transgene may account for the phenotype variation. Further marker analysis reveals that mutant BMP4 induces ectopic expression of the dorsal markers MSX1/2 and PAX7 in the ventral neural tube. In addition, the expression of the ventral neural marker NKX2.2 is affected by the expanded BMP4 activity, indicating that ectopic BMP signaling can antagonize ventral signaling. Comparison of the phenotypes of the Wnt1/ Bmp4 and Wnt1/mBmp4 bigenic embryos that express transgenes at the same level, respectively, shows that mutant BMP4 causes the expansion of dorsal neural fates ventrally while wild type BMP4 does not, suggesting that mutant BMP4 acts farther than wild type BMP4. Together, these data suggest that the N-terminus basic amino acid core controls BMP4 long-range activity in neural development, and that BMP signaling patterns the dorsal neural tube through a secondary signaling pathway that involves homeodomain transcription factors MSX1/2 and PAX7. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La nefropatía obstructiva puede ser un desorden renal complejo de tratar debido al severo cuadro inflamatorio, desbalance oxidativo, apoptosis y fibrosis. Estudios previos sostienen que rosuvastatina (Ros) podría tener utilidad como una opción terapéutica en enfermedades renales que cursarían con apoptosis y fibrosis. Objetivo: Evaluar los posibles efectos antiapoptóticos y antifibróticos de Ros durante la obstrucción ureteral unilateral en ratas neonatas. Materiales y Métodos: Ratas Wistar neonatas de 48 hs. de vida fueron intervenidas quirúrgicamente (grupo experimental) o no (grupo control). Ambos grupos fueron subdivididos en tratadas o no tratadas con Ros (10mg / kg por día) vía oral durante 14 días. Posteriormente se procedió a nefrectomizar y procesar las cortezas renales para determinar por RT-PCR las expresiones de genes: óxido nítrico sintasa inducible (iNOS), factor promotor génico de chaperonas (hsf1), proteína de shock térmico (hsp70), bax, bcL2, wt1, p53, snail, proteína morfogénica del hueso (bmp7), caderina E, factor transformador de crecimiento (tgf-β) y factor de necrosis tumoral (tnf-α). Resultados: La obstrucción ureteral unilateral neonatal indujo una marcada fibrosis y apoptosis, mientras que el tratamiento con Ros moduló el patrón de genes fibróticos y apoptóticos mediante disminución de la expresión de bmp7, caderina E, wt1, p53 y bcl2; además indujo una caída en la expresión de los genes profibróticos y proapoptóticos (bax, tnf-α y tgf-β). El análisis de los resultados presentados, permiten sugerir que la protección renal de rosuvastatina durante nefropatía obstructiva de ratas neonatas estaría asociado a la interacción entre hsp70 y la biodisponibilidad del óxido nítrico con el concomitante descenso en genes pro-apoptóticos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol acts as a teratogen in developing fetuses causing abnormalities of the brain, heart, craniofacial bones, and limb skeletal elements. To assess whether some teratogenic actions of ethanol might occur via dysregulation of msx2 expression, we examined msx2 expression in developing mouse embryos exposed to ethanol on embryonic day (E) 8 of gestation and subjected to whole mount in situ hybridization on E11–11.5 using a riboprobe for mouse msx2. Control mice exhibited expression of msx2 in developing brain, the developing limb buds and apical ectodermal ridge, the lateral and nasal processes, olfactory pit, palatal shelf of the maxilla, the eye, the lens of the eye, otic vesicle, prevertebral bodies (notochord), and endocardial cushion. Embryos exposed to ethanol in utero were significantly smaller than their normal counterparts and did not exhibit expression of msx2 in any structures. Similarly, msx2 expression, as determined by reverse transcription–PCR and Northern blot hybridization, was reduced ≈40–50% in fetal mouse calvarial osteoblastic cells exposed to 1% ethanol for 48 hr while alkaline phosphatase was increased by 2-fold and bone morphogenetic protein showed essentially no change. Transcriptional activity of the msx2 promoter was specifically suppressed by alcohol in MC3T3-E1 osteoblasts. Taken together, these data demonstrate that fetal alcohol exposure decreases msx2 expression, a known regulator of osteoblast and myoblast differentiation, and suggest that one of the “putative” mechanisms for fetal alcohol syndrome is the inhibition of msx2 expression during key developmental periods leading to developmental retardation, altered craniofacial morphogenesis, and cardiac defects.