954 resultados para bone marrow, stem cells, regenerativve medicine, adipose tissue, tissue engineering
Resumo:
Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.
Resumo:
To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitroand the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.
Resumo:
Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.
Resumo:
Recently, the cannabinoid receptors CB1 and CB2 were shown to modulate bone formation and resorption in vivo, although little is known of the mechanisms underlying this. The effects of cannabinoids on mesenchymal stem cell (MSC) recruitment in whole bone marrow were investigated using either the fibroblastic colony-forming unit (CFU-f) assay or high-density cultures of whole bone marrow. Levels of the CB1 and CB2 receptors were assessed by flow cytometry. Treatment of CFU-f cultures with the endocannabinoid 2-arachidonylglycerol (2-AG) dose-dependently increased fibroblastic and differentiated colony formation along with colony size. The nonspecific agonists CP 55,940 and WIN 55,212 both increased colony numbers, as did the CB2 agonists BML190 and JWH015. The CB1-specific agonist ACEA had no effect, whereas the CB2 antagonist AM630 blocked the effect of the natural cannabinoid tetrahydrocannabivarin, confirming mediation via the CB2 receptor. Treatment of primary bone marrow cultures with 2-AG stimulated proliferation and collagen accumulation, whereas treatment of subcultures of MSC had no effect, suggesting that the target cell is not the MSC but an accessory cell present in bone marrow. Subcultures of MSCs were negative for CB1 and CB2 receptors as shown by flow cytometry, whereas whole bone marrow contained a small population of cells positive for both receptors. These data suggest that cannabinoids may stimulate the recruitment of MSCs from the bone marrow indirectly via an accessory cell and mediated via the CB2 receptor. This recruitment may be one mechanism responsible for the increased bone formation seen after cannabinoid treatment in vivo.
Resumo:
Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham ( laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1 beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure. STEM CELLS 2009; 27: 682-692
Resumo:
The identification of mesenchymal stem cell ( MSC) sources that are easily obtainable is of utmost importance. Several studies have shown that MSCs could be isolated from umbilical cord (UC) units. However, the presence of MSCs in umbilical cord blood (UCB) is controversial. A possible explanation for the low efficiency of MSCs from UCB is the use of different culture conditions by independent studies. Here, we compared the efficiency in obtaining MSCs from unrelated paired UCB and UC samples harvested from the same donors. Samples were processed simultaneously, under the same culture conditions. Although MSCs from blood were obtained from only 1 of the 10 samples, we were able to isolate large amounts of multi-potent MSCs from all UC samples, which were able to originate different cell lineages. Since the routine procedure in UC banks has been to store the blood and discard other tissues, such as the cord and/or placenta, we believe our results are of immediate clinical value. Furthermore, the possibility of originating different cell lines from the UC of neonates born with genetic defects may provide new cellular research models for understanding human malformations and genetic disorders, as well as the possibility of testing the effects of different therapeutic drugs.
Resumo:
Adipose tissue may represent a potential source of adult stem cells for tissue engineering applications in veterinary medicine. It can be obtained in large quantities, under local anesthesia, and with minimal discomfort. In this study, canine adipose tissue was obtained by biopsy from subcutaneous adipose tissue or by suction-assisted lipectomy (i.e., liposuction). Adipose tissue was processed to obtain a fibroblast-like population of cells similar to human adipose-derived stem cells (hASCs). These canine adipose-derived stem cells (cASCs) can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of cASCs are of mesodermal or mesenchymal origin. cASCs are able to differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirate, canine adipose tissue may also contain multipotent cells and represent an important stem cell source both for veterinary cell therapy as well as preclinical studies.
Resumo:
Background. Mesenchymal stem cells (MSCs) are an attractive source for generation of cells with beta-cell properties. Previous studies have demonstrated the ability of prolactin to induce an increase in beta-cell mass and maturation, which suggests beneficial effects of its use in MSC differentiation protocols. Objective. To evaluate the expression of endocrine differentiation markers in rat MSCs treated in vitro with prolactin. Methods. Mesenchymal stem cells from bone marrow of Wistar rats were isolated, expanded, and characterized. Differentiation of MSCs was induced in medium containing 23 mmol/L of glucose, and nicotinamide, 2-mercaptoethanol, and exendin-4, in the presence or absence of 500 ng/mL of rat recombinant prolactin. Expression of endocrine markers and prolactin receptor genes was evaluated using real-time polymerase chain reaction, and compared between culture stages and presence vs absence of prolactin in the culture medium. Expression of insulin, somatostatin, glucagon, and pancreatic and duodenal homeobox 1 was also evaluated at immunofluorescence microscopy. Results. Isolated cells were mostly MSCs, as confirmed at fluorescent-activated cell sorting and cytochemistry. Pax6, Ngn-3, Isl1, NeuroD1, Nkx2.2, and Nkx6.1 exhibited varied expression during culture stages. The long form of the prolactin receptor messenger RNA was induced in prolactin-treated cultures (P < .05). The somatostatin gene was induced in early stages of differentiation (P < .05), and its expression was induced by prolactin, as confirmed using immunofluorescence. Conclusion. Culture of rat bone marrow MSCs in differentiation medium induces expression of pancreatic endocrine-specific genes, and somatostatin and prolactin receptor expression was also induced by prolactin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Investigation of the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia patients is essential to predict prognosis and survival. In 20 patients treated at the Bone Marrow Transplantation Unit of São José do Rio Preto (São Paulo, Brazil), we used fluorescence in situ hybridization (FISH) to investigate the frequency of cells with BCR/ABL rearrangement at diagnosis and at distinct intervals after allo-HSCT until complete cytogenetic remission (CCR). We investigated the disease-free survival, overall survival in 3 years and transplant-related mortality rates, too. Bone marrow samples were collected at 1, 2, 3, 4, 6, 12, and 24 months after transplantation and additional intervals as necessary. Success rate of the FISH analyses was 100%. CCR was achieved in 75% of the patients, within on average of 3.9 months; 45% patients showed CCR within 60 days after HSCT. After 3 years of the allo-HSCT, overall survival rate was 60%, disease-free survival was 50% and the transplant-related mortality rate was 40%. The study demonstrated that the BCR-ABL FISH assay is useful for follow-up of chronic myeloid leukemia patients after HSCT and that the clinical outcome parameters in our patient cohort were similar to those described for other bone marrow transplantation units. ©FUNPEC-RP.