560 resultados para biodegradation
Resumo:
Aryl hydrocarbon (Ah) receptor (Ah-agonist) effects of environmental samples containing polychlorinated aromatic hydrocarbons were evaluated using a 7-ethoxyresorufin-O-deethylase (FROD) assay of a primary hepatocyte culture from grass carp (Ctenopharyngodon idellus). The results were compared with those obtained from the assay using the rat hepatoma cell line H4IIE and chemical analysis using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). A dose-response relationship was observed between the EROD activities, either from primary hepatocyte culture assay or from H4IIE assay, and concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that the assay based on the H4IIE cell line (EC50 = 0.83 mug/mL) is more sensitive to TCDD than the assay based on primary hepatocyte Culture (EC50 = 9.7 pg/mL). In tests of environmental samples, the results from the assay using primary hepatocyte culture were comparable to those from the assay using the H4IIE cell line and chemical analysis of concentrations of mixtures of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF). The lack of a change in the activities of glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) in cell culture upon exposure to TCDD indirectly indicates that the compound is persistent to biodegradation in the cell culture system. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A site investigation was conducted to correlate the relationships between microcystins (MC) concentration and algal growth in Dianchi Lake in China. Laboratory experiments were undertaken to test the effects of sediment adsorption, photoirradiation and biodegradation on microcystins removal. Bioaccumulation of microcystins was also determined using silver carp fish. It was observed that MC concentrations varied in accordance with algae growth in Dianchi Lake. The results obtained in the laboratory demonstrated that the removal of MC with fresh sediments was less than 10%, photoirradiation removed more than 75% MC within two hours, and the biodegradation needed much longer time to produce substantial degradation of MC. The results suggest that bioaccumulation of microcystins in fish was not significant in Dianchi Lake.
Resumo:
Water solubility enhancements of six phthalates (five aliphatic phthalates and one phenyl phthalate) by cetyltrimethylammonium bromide (CTAB) and beta-cyclodextrin (beta-CD) were studied at 25 degreesC. The solubilities of these plithalates are remarkably enhanced by CTAB solutions above the critical micelle concentration (cmc). Only marginal enhancement of phthalate solubility was observed in solutions containing CTAB below its cmc and beta-CD at low concentrations (less than 5 mM). The solubility enhancements of the plithalates are proportional to the added amount of CTAB and beta-CD. Partition coefficients of the plithalates between monomeric CTAB surfactant and water (K-MN) and between CTAB micelle and water K-MC) were estimated from the experimental data. The mechanisms of solubility enhancements by CTAB and beta-CD were discussed. A log-linear equation was proposed and evaluated for the solubilization by CTAB below cmc, while the previously proposed linear partitioning model was questioned. The structures of the complexes formed between plithalates and beta-CD were proposed, and the formation constants were estimated. The values of log K-MC, log K-MN, and log Kbeta-CD of the plithalates were found to correlate linearly with the log K-OW of plithalates, with the exception of the solid phenyl phthalate.
Resumo:
The concentrations of polychlorinayed dibenzo-p-dioxins and dibenzofurans (PCDD/F) in surface sediment, soil, human hair, acid fish muscle from Ya-Er Lake area, China, were analyzed. The results showed that there were very high concentrations of PCDD/F existing in these samples. The results also indicated that Ya-Er Lake, which received a large amount of waste water from a nearby chloroalkali plant, was heavily polluted by PCDD:F. The present study demonstrated that those congeners, which possess at least three chlorine atoms in the lateral position with a fourth chlorine atom in the neighborhood bond of the third single chlorine atom, such as 1,2,7,8-TCDF and 2,3.6,7-TCDF, were very resistant to biodegradation due to the "neighbor effect" of every two chlorine atoms. The present study suggested that human hair may be a suitable alternative bioindicator for detecting PCDD/F exposure. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Sediments and soils collected from the Ya-Er Lake area in China were analysed for the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), hexachlorocyclohexane (HCHs) and hexachlorobenzene (HCB). The results indicated the main pollution problems in the Ya-Er Lake area, which was heavily polluted by HCHs and chlorobenzenes, now is dominantly polluted by PCDD/Fs, PCBs and HCB. The occurrence of PCDD/Fs and PCBs with relatively high levels of HpCDDs, OCDD and low chlorinated-substituted PCBs, is attributed to the discharge of waste water and biodegradation. The vertical distributions of HCH-residues are related with the content of organic carbon and particle size. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Methomyl, an extremely toxic pesticide, is widely used in agriculture. A strain named mdw-1 capable of degrading methomyl rapidly was successfully isolated from activated sludge in this study. It could utilize methomyl as the sole carbon or nitrogen source. The optimal temperature and medium pH for its growth and methomyl biodegradation were 30 degrees C and 7.0, respectively. It was identified as a Paracoccus sp. according to its morphological features, physiological and biochemical characteristics, and phylogenetic analysis based on the sequence of 16S rDNA. Gas chromatography-mass spectrometry (GC-MS) analysis showed that methomyl could be completely transformed to S-methyl-N-hydroxythioacetamidate in 10 h of incubation with the isolate mdw-1.
Resumo:
In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.
Resumo:
本文以苯并(a)芘为目标污染物,探讨了母体化合物BaP及其次生代谢产物的连续降解的方法、降解过程和微生物的酶蛋白应答,并运用种子(小麦、白菜和萝卜)根伸长生长实验,考查了BaP的不同降解时期次生代谢产物造成的复合污染整体效应,旨在探讨BaP及其次生代谢产物的降解影响因素,减少其环境累积,为BaP污染环境的全面修复提供实验依据和理论基础。 在实验条件下,运用HPLC鉴定出真菌FZSY-1降解BaP的同时生成了三个次生代谢产物BP1,6-quinone, BP7,8-diol 和 3-OHBP;同时鉴定出真菌FZSY-2降解BaP的同时生成了两个代谢产物BP1,6-quinone 和 3-OHBP。 驯化微生物与氧化剂(KMnO4)的耦合降解系统对BaP及其代谢产物的连续降解效果好于单纯微生物降解。三个次生代谢产物中,BP1,6-quinone在环境中最易累积。同时提出了微生物与氧化剂协同的作用可以有效促进环境中持久有机污染物(尤其是高浓度,小面积污染)的连续降解。对于FZSY-1与氧化剂(KMnO4)耦合降解BaP,在TW80存在下,与对照(未加TW80)相比,在降解的前期(3天取样),BaP及其代谢产物的降解相对滞后;而在降解的后期(12天取样),BaP及其代谢产物的降解高于对照。 在不同BaP浓度下,检测了四种酶,C120、C230、CAT和PPO。三株细菌的CAT酶活与BaP的浓度无关;三株细菌的C230酶活都比较高;三株细菌的PPO酶活均较低。加入共代谢底物(琥珀酸钠)后,与对照(未加入共代谢底物)相比,C120、C230酶活明显提高。 以BaP以及FZSY-1(BZSY-2)降解BaP不同时期的复合降解产物(BaP,M6,M12,CK)为目标污染物,它们对小麦种子根伸长的抑制作用顺序为:M6﹥BaP﹥M12﹥CK。BaP,M6,M12,CK对白菜和萝卜种子根伸长的抑制作用顺序和小麦相同;同一目标污染物(M6)对这几种供试种子(小麦、白菜和萝卜)根伸长的抑制作用顺序为小麦﹥白菜﹥萝卜;三种植物种子根伸长抑制作用均表现为:真菌的M6﹥细菌的M6,真菌的M12﹥细菌的M12。
Resumo:
东北黑土区是我国重要的商品粮生产基地,在保证我国的粮食安全中发挥着重要作用。随着生产的发展,多种农用化学品尤其是大量杀虫剂和除草剂进入黑土农田环境,在预防作物病虫害及减少人工劳动强度的同时,这些化学品在环境中会发生一系列复杂的物理、化学和生物化学反应,使黑土面临着环境安全危机。因此,研究农用化学品的土壤生态过程与黑土农田生态系统环境安全有关的科学问题显得尤为重要。 本文以东北地区广泛使用的除草剂乙草胺为代表,在推荐施用量条件下,通过室内恒温(25℃)避光培养试验,研究了乙草胺在黑土中的主要生态过程(降解、吸附)及在土壤中的残留时间特征,探讨了影响乙草胺生态过程行为的主要因素,同时利用磷脂脂肪酸(Phospholipid Fatty Acids,PLFAs)为标识物研究了土壤微生物对外源污染物的的响应。 研究结果表明:吸附是乙草胺在土壤中主要去向之一,高有机质黑土对乙草胺的吸附能力很强。微生物降解是乙草胺消失的另一个重要要因素,适当的水分有益于土壤中微生物生长,从而促进土壤中乙草胺降解,其中,细菌比真菌具有更强的降解乙草胺的能力;随着乙草胺的施药量增加,乙草胺总降解率下降。在乙草胺施入及降解过程中,土壤微生物群落不断发生变化,真菌PLFAs、细菌PLFAs;G+菌PLFAs、G-菌PLFAs数量及比例受到乙草胺施入的显著影响,细菌比真菌的变化更为显著。原位土壤中,乙草胺在表层土壤(0-10cm和10-20cm)微生物降解作用显著;而降水是促进乙草胺向深层次迁移的主要因素。 通过对乙草胺的主要生态过程进行研究,对深入探讨乙草胺生态环境安全性及合理使用除草剂有着重要的指导作用。
Resumo:
本文以土壤为介质,以2,4,4′-三氯联苯、2,2′,5,5′-四氯联苯、2,2′4,5,5′-五氯联苯、2,2′,3,4,4′,5-六氯联苯和2,2′,3,4,4′,5,5′-七氯联苯为目标污染物,对钯/铁双金属、微生物及其联合修复多氯联苯污染土壤进行了研究。 对钯/铁双金属还原脱氯多氯联苯的影响因素和动力学进行了研究,研究结果表明:较高的钯化率、反应温度,弱酸性pH条件对脱氯反应有促进作用;在实验所考察的初始浓度范围内,脱氯效果与多氯联苯的初始浓度关系较小;而钯/铁双金属投加量则存在一个适宜值,不宜太高或太低。多氯联苯催化脱氯符合准一级反应动力学。反应速率与多氯联苯初始浓度关系很小;反应速率随钯化率、钯/铁投加量和反应温度升高而增大;初始pH为5.5时反应速率最快。且联苯环上氯取代数越少,越难以脱氯。 从受多氯联苯长期污染的土样中筛选出一株高效降解多氯联苯的细菌(H1),菌株初步鉴定为芽胞杆菌属。在本实验条件下,微生物对土壤中多氯联苯的降解较为适宜的条件为:微生物接种量10%、反应温度在30℃左右、pH在7左右。在此条件下,微生物对PCBs的降解,随初始浓度的增加,降解速率逐渐降;且随氯取代数目的增加,降解率逐渐降低。 采用化学和微生物方法联合修复多氯联苯污染土壤是可行的。经过钯/铁双金属和好氧微生物连续处理后,2,4,4′-三氯联苯和2,2′,5,5′-四氯联苯几乎被完全降解,而2,2′4,5,5′-五氯联苯、2,2′,3,4,4′,5-六氯联苯和2,2′,3,4,4′,5,5′-七氯联苯还原脱氯后生成的低氯代同系物(2,2′,5-三氯联苯)也很容易被微生物所降解。 利用GC-MS对多氯联苯的中间产物及最终产物的分析,推测多氯联苯降解的反应机理为:在钯/铁双金属——水体系中,铁作为还原剂给出电子,水为质子供体。在催化剂钯作用下,H+与铁给出的电子在双金属表面结合,形成具有高反应活性的中间产物——新生态H*。H *攻击多氯联苯取代联苯环上的氯形成脱氯产物和氯离子。反应体系中的溶解氧与溶解铁结合在钯/铁表面形成氧化层,阻碍反应进行。过多的H2气泡也会覆盖活性反应位,对脱氯反应不利。
Resumo:
甲醇作为一种有机污染物广泛存在于有机合成和石油化工等生产废水中.该研究针对氮肥生产过程中产生的低浓度甲醇废水缺乏有效回收利用工艺的现实情况,以氮肥生产过程中产生的工艺冷凝液和尿素水解水为对象,通过甲醇高效降解菌的分离、固定化,生物活性炭(BAC)反应系统的建立,小试、中试等研究工作,确定了将其回用到脱盐水系统的可行性,提出了工艺参数和工业化方案,并对BAC生物膜结构特点进行了较为深入的研究.