972 resultados para bcl-2
Resumo:
Until recently, most research efforts aimed at developing anti-cancer tools were focusing on small molecules. Alternative compounds are now being increasingly assessed for their potential anti-cancer properties, including peptides and their derivatives. One earlier limitation to the use of peptides was their limited capacity to cross membranes but this limitation was alleviated with the characterization of cell-permeable sequences. Additionally, means are designed to target peptides to their malignant targets. Most anti-cancer peptidic compounds induce apoptosis of tumor cells by modulating the activity of Bcl-2 family members that control the release of death factors from the mitochondria or by inhibiting negative regulators of caspases, the proteases that mediate the apoptotic response in cells. Some of these peptides have been shown to inhibit the growth of tumors in mouse models. Hopefully, pro-apoptotic anti-tumor peptides will soon be tested for their efficacy in patients with cancers.
Resumo:
Human Ag-specific CD8(+) T lymphocytes are heterogeneous and include functionally distinct populations. In this study, we report that at least two distinct mechanisms control the expansion of circulating naive, memory, and effector CD8(+) T lymphocytes when exposed to mitogen or Ag stimulation. The first one leads to apoptosis and occurs shortly after in vitro stimulation. Susceptibility to cell death is prominent among primed T cell subsets, and it is inversely correlated with the size of the ex vivo Bcl-2(high) population within these subsets. Importantly, the Bcl-2(high) phenotype is associated to the proportion of responsive CD8(+) T cells, independently of their differentiation stage. The second one depends on the expression of newly synthesized cyclin-dependent kinase inhibitor p16(INK4a) that occurs in a significant fraction of T cells that had been actively cycling, leading to their cell cycle arrest upon stimulation. Strikingly, accumulation of p16(INK4a) protein preferentially occurs in naive as opposed to primed derived T lymphocytes and is not related to apoptosis. Significant levels of p16 are readily detectable in a small number of ex vivo CD8(+) T cells. Our observations reveal that activation-induced p16 expression represents an alternative process to apoptosis, limiting the proliferation potential of activated naive derived T lymphocytes.
Resumo:
Increased levels of oxidized low-density lipoproteins (oxLDL) contribute to the increased risk for atherosclerosis, which persists even after adjusting for traditional risk factors, among patients with ESRD. Regulatory T cells (CD4+/CD25+ Tregs), which down-regulate T cell responses to foreign and self-antigens, are protective in murine atherogenesis, but whether similar immunoregulation occurs in humans with ESRD is unknown. Because cellular defense systems against oxLDL involve proteolytic degradation, the authors investigated the role of oxLDL on proteasome activity of CD4+/CD25+ Tregs in patients with ESRD. CD4+/CD25+ Tregs isolated from uremic patients' peripheral blood, especially that of chronically hemodialyzed patients, failed to suppress cell proliferation, exhibited cell-cycle arrest, and entered apoptosis by altering proteasome activity. Treating CD4+/CD25+ Tregs with oxLDL or uremic serum ex vivo decreased the number and suppressive capacity of CD4+/CD25+ Tregs. In vitro, oxLDL promoted the accumulation of p27Kip1, the cyclin-dependent kinase inhibitor responsible for G1 cell cycle arrest, and increased apoptosis in a time- and concentration-dependent manner. In summary, proteasome inhibition by oxLDL leads to cell cycle arrest and apoptosis, dramatically affecting the number and suppressive capacity of CD4+/CD25+ Tregs in chronically hemodialyzed patients. This response may contribute to the immune dysfunction, microinflammation, and atherogenesis observed in patients with ESRD.
Resumo:
When mouse dendritic cells (DCs) are isolated from tissues, purified and placed in a nutritive culture they die more rapidly than would be expected from their normal turnover in vivo. This can distort culture assays of DC function. We therefore tested several approaches to prolonging DC survival in culture. Of several cytokines tested granulocyte-macrophage colony stimulating factor was most effective at preserving the viability of conventional DCs (cDCs) but was ineffective for plasmacytoid DCs (pDCs). Surprisingly, Fms-like tyrosine kinase 3 ligand, crucial for DC development, produced only a marginal improvement in DC survival in culture, and interleukin-3, reported to prevent apoptosis of human pDCs, produced only a minor improvement in survival of mouse DCs. Genetic manipulation of cell death pathways was also tested, to avoid activation effects exerted by cytokine signalling. The isolation of DCs from mice overexpressing Bcl-2 was especially effective in maintaining pDC viability but gave a lesser improvement in cDC viability. DCs isolated from Bim(-/-)Noxa(-/-) mice also showed improved culture survival, but in this case with pDCs showing the least improvement.
Resumo:
RESUME Introduction: Les cellules T mémoires humaines sont classées en trois sous-populations sur la base de l'expression d'un marqueur de surface cellulaire, CD45RA, et du récepteur aux chimiokines, CCR7. Ces sous-populations, nommées cellules mémoires centrales (TcM), mémoires effectrices (TEM) et mémoires effectrices terminales (ITEM), ont des rôles fonctionnels distincts, ainsi que des capacités de prolifération et de régénération différentes. Cependant, la génération de ces différences reste encore mal comprise et on ignore les mécanismes moléculaires impliqués. Matériaux et Méthodes: Des cellules mononucléaires humaines du sang périphérique ont été séparées par cytométrie de flux selon leur expression de CD4, CD8, CD45RA et CCR7 en sous-populations de cellules CD4+ ou CD8+ naïves, TcM, TEM ou ITEM. Dans chacune de ces sous-populations, 14 gènes impliqués dans l'apoptose, la survie ou la capacité proliférative des cellules T ont été quantifiés par RT-PCR en temps réel, relativement à l'expression d'un gène de référence endogène. L'ARN provenant de 450 cellules T a été utilisé par gène et par sous-population. Les gènes analysés (cibles) comprenaient des gènes de survie (BAFF, APRIL, BAFF-R, BCMA, TACI, IL-15Rα, IL-7Rα), des gènes anti-apoptotiques (Bcl-2, BclxL, FLIP), des gènes pro-apoptotiques (Bad, Bax, Fast) et le gène anti-prolifératif, Tob. A l'aide de la méthode comparative delta-delta-CT, le taux d'expression des gènes cibles de chaque sous-population des cellules T mémoires CD4+ et CD8+, à été comparée à leur taux d'expression dans les cellules T naïves CD4+ et CD8+. Résultats: Dans les cellules CD8+, les gènes pro-apoptotiques Bax et Fast étaient surexprimés dans toutes les sous-populations mémoires, tandis que l'expression des facteurs anti-apoptotiques et de survie comme Bcl-2, APRIL et BAFF-R, étaient diminués. Ces deux tendances étaient particulièrement accentuées dans les sous-groupes des cellules mémoires TEM et TTEM. A noter que malgré le fait que leur expression était également diminuée dans les autres cellules mémoires, le facteur de survie IL-7Ra, était sélectivement surexprimé dans la sous-population de cellules TcM et l'expression d'IL-15Ra était sélectivement augmentée dans les TEM. Dans les cellules CD4+, le taux d'expression des gènes analysés était plus variable entre les sujets étudiés que dans les cellules CD8+, ne permettant pas de définir un profil d'expression spécifique. L'expression du gène de survie BAFF par contre, a été significativement augmentée dans toutes les sous-populations mémoire CD4+. Il en va de même pour l'expression d' APRIL et de BAFF-R, bien que dans moindre degré. A remarquer que l'expression du facteur anti-apoptotique Fast a été observée uniquement dans la souspopulation des TTEM. Discussion et Conclusions: Cette étude montre une nette différence entre les cellules CD8+ et CD4+, en ce qui concerne les profils d'expression des gènes impliqués dans la survie et l'apoptose des cellules T mémoires. Ceci pourrait impliquer une régulation cellulaire homéostatique distincte dans ces deux compartiments de cellules T mémoires. Dans les cellules CD8+ l'expression d'un nombre de gènes impliqués dans la survie et la protection de l'apoptose semblerait être diminuée dans les populations TEM et TTEM en comparaison à celle des sous-populations naïves et TEM, tandis que l'expression des gènes pro-apoptotiques semblerait être augmentée. Comme ceci paraît être plus accentué dans les TTEM, cela pourrait indiquer une plus grande disposition à l'apopotose dans les populations CCR7- (effectrices) et une perte de survie parallèlement à l'acquisition de capacités effectrices. Ceci parlerait en faveur d'un modèle de différentiation linéaire dans les cellules CD8+. De plus, l'augmentation sélective de l'expression d'IL-7Ra observée dans le sous-groupe de cellules mémoires TEM, et d'IL-15Ra dans celui des TEM, pourrait indiquer un moyen de sélection pour des réponses immunitaires mémoires à long terme par une réponse distincte à ces cytokines. Dans les cellules CD4+ par contre, aucun profil d'expression n'a pu être déterminé; les résultats suggèrent même une résistance relative à l'apoptose de la part des cellules mémoires. Ceci pourrait favoriser l'existence d'un modèle de différentiation plus flexible avec des possibilités d'interaction multiples. Ainsi, la surexpression sélective de BAFF, APRIL et BAFF-R dans les sous-populations individuelles des cellules mémoires pourrait être un indice de l'interaction de ces sous-groupes avec des cellules B. ABSTRACT Introduction: Based on their surface expression of the CD45 isoform and of the CCR7 chemokine receptor, memory T cells have been divided into the following three subsets: central memory (TAM), effector memory (TEM) and terminal effector memory (ITEM). Distinct functional roles and different proliferative and regenerative capacities have been attributed to each one of these subpopulations. The molecular mechanisms underlying these differences; however, remain poorly understood. Materials and Methods: According to their expression of CD4, CD8, CD45RA and CCR7, human peripheral blood mononuclear cells were sorted by flow-cytometry into CD4+ or CD8+ naïve, TAM, TEM and ITEM subsets. Using real-time PCR, the expression of 14 genes known to be involved in apoptotis, survival or proliferation of T cells was quantified separately in each individual subset, relative to an endogenous reference gene. The RNA equivalent of 450 T cells was used for each gene and subset. The target gene panel included the survival genes BAFF, APRIL, BAFF-R, BCMA, TACI, IL-15Rα and IL-7Rα, the anti-apoptotic genes Bcl2, Bcl-xL and FLIP, the pro-apoptotic genes Bad, Bax and Fast, as well as the antiproliferative gene Tob. Using the comparative CT-method, the expression of the target genes in the three memory T cell subsets of both CD4+ and CD8+ T cell populations was compared to their expression in the naïve T cells. Results: In CD8+ cells, the pro-apoptotic factors Bax and Fast were found to be upregulated in all memory T cell subsets, whereas the survival and anti-apoptotic factors Bcl-2, APRIL and BAFF-R were downregulated. These tendencies were most accentuated in TEM and TTEM subsets. Even though the survival factor IL-7Rα was also downregulated in these subsets, interestingly, it was selectively upregulated in the CD8+ TAM subset. Similarly, IL-15Rαexpression was shown to be selectively upregulated in the CD8+ TEM subset. In CD4+ cells, the expression levels of the analyzed genes showed a greater inter-individual variability than in CD8+ cells, thus suggesting the absence of any particular expression pattern for CD4+ memory T cells. However, the survival factor BAFF was found to be significantly upregulated in all CD4+ memory T cell subsets, as was also the expression of APRIL and BAFF-R, although to a lesser extent. Furthermore, it was noted that the pro-apoptotic gene Fast was only expressed in the TTEM CD4+ subset. Discussion and Conclusions: Genes involved in apoptosis and survival in human memory T cells have been shown to be expressed differently in CD8+ cells as compared to CD4+ cells, suggesting a distinct regulation of cell homeostasis in these two memory T cell compartments. The present study suggests that, in CD8+ T cells, the expression of various survival and antiapoptotic genes is downregulated in TEM and TTEM subsets, while the expression of proapoptotic genes is upregulated in comparison to the naïve and the TAM populations. These characteristics, potentially translating to a greater susceptibility to apoptosis in the CCR7- (effector) memory populations, are accentuated in the TTEM population, suggesting a loss of survival in parallel to the acquisition of effector capacities. This speaks in favour of a linear differentiation model in CD8+ T memory cells. Moreover, the observed selectively increased expression of IL-7Rα in CD8+ TAM cells - as that of IL-15Rα in CD8+ TEM cells -suggest that differential responsiveness to cytokines could confer a selection bias for distinct long-term memory cell responses. Relative to the results for CD8+ T cells, those for CD4+ T cells seem to indicate a certain resistance of the memory subsets to apoptosis, suggesting the possibility of a more flexible differentiation model with multiple checkpoints and potential interaction of CD4+ memory cells with other cells. Thus, the selective upregulation of BAFF, APRIL and BAFF-R in individual memory subsets could imply an interaction of these subsets with B cells.
Resumo:
Breast cancer is the most common cancer among women, 23% (1.3 million) of the total of new cases and the second leading cause of cancer death in women exceeded only by lung cancer. Natural medicines have been proven to be a central source of narrative agents with a pharmaceutical potential. Costunolide is sesquiterpene lactones consisting of diverse plant chemicals that exhibit anti cancer action through cytotoxic effects on various cancer cells. The objectives of present study were to explore the effects of natural compounds on the proliferation of MCF-7 cells and to determine the role of ROS in natural compounds-induced apoptosis in breast cancer cells with a therapeutic potential. Results showed that costunolide screened, possess potent anticancer properties against breast cancer MCF-7 cells, Costunolide was observed as strong anti-proliferative agent with IC50 = 50µM. The anti-proliferative effect of costunolide on MCF cells was confirmed by live/dead assay using fluorescent probes calcein AV/PI. The results demonstrated that treatment of cells with costunolide decreased the viability of MCF-7 cells in a dose-dependent manner. To determine the costunolide-induced apoptosis, flow cytometric analysis was carried out. The results showed that costunolide induced apoptosis in a dose-dependent manner in breast cancer MCF-7cells. ROS are well known mediators of intracellular signaling of cascades. The excessive generation of ROS can induce oxidative stress, loss of cell functioning, and apoptosis. In the present study, we assumed that costunolide might arouse ROS level, which could be involved in induction of apoptosis. Therefore, the intracellular ROS level was measured using the ROS-detecting fluorescence dye 2, 7-dichlorofluorescein diacetate (DCF-DA). Interestingly these effects were significantly abrogated when the cells were pretreated with N-acetyl- cysteine (NAC), a specific ROS inhibitor. Costunolide induces apoptosis through extrinsic pathway in MCF-7 breast cancer cells, In order to examine whether costunolide suppresses cell growth inducing apoptotic cell death, we analyzed DNA contents and apoptosis-related proteins expression level by flow cytometry and western blot, respectively in MCF-7 breast cancer cells we investigated whether costunolide activates extrinsic apoptotic pathway. We examined the expression levels of death receptor signaling-related proteins, caspase-3, and PARP. The results showed that procaspase-3 was cleaved to yield 17 and 20kDa fragments and activation of PARP in treated cells with 25 and 50μM of costunolide. Costunolide induce apoptosis through intrinsic mitochondria pathway in MCF-7 breast cancer Cells. We examined the expression levels of mitochondrial apoptotic pathway related proteins such as anti-apoptotic protein, B-cell lymphoma protein-2 (Bcl2), and pro-apoptotic protein Bax. Costunolide involved in the down regulation of Bcl-2 and up regulation of Bax. These results suggest that costunolide may have beneficial effects for the reduction of breast cancer growth, and new therapeutic strategy for the treatment of human cancers.
Resumo:
Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
Resumo:
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Resumo:
BAFF, APRIL and their receptors play important immunological roles, especially in the B cell arm of the immune system. A number of splice isoforms have been described for both ligands and receptors in this subfamily, some of which are conserved between mouse and human, while others are species-specific. Structural and mutational analyses have revealed key determinants of receptor-ligand specificity. BAFF-R has a strong selectivity for BAFF; BCMA has a higher affinity for APRIL than for BAFF, while TACI binds both ligands equally well. The molecular signaling events downstream of BAFF-R, BCMA and TACI are still incompletely characterized. Survival appears to be mediated by upregulation of Bcl-2 family members through NF-kappaB activation, degradation of the pro-apototic Bim protein, and control of subcellular localization of PCKdelta. Very little is known about other signaling events associated with receptor engagement by BAFF and APRIL that lead for example to B cell activation or to CD40L-independent Ig switch.
Resumo:
Background. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to modulate multiple cellular processes, including apoptosis. The aim of this study was to assess the effects of HCV NS5A on apoptosis induced by Toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Methods. Apoptotic responses to TLR4 ligands and the expression of molecules involved in TLR signaling pathways in human hepatocytes were examined with or without expression of HCV NS5A. Results. HCV NS5A protected HepG2 hepatocytes against LPS-induced apoptosis, an effect linked to reduced TLR4 expression. A similar downregulation of TLR4 expression was observed in Huh-7-expressing genotype 1b and 2a. In agreement with these findings, NS5A inhibited the expression of numerous genes encoding for molecules involved in TLR4 signaling, such as CD14, MD-2, myeloid differentiation primary response gene 88, interferon regulatory factor 3, and nuclear factor-κB2. Consistent with a conferred prosurvival advantage, NS5A diminished the poly(adenosine diphosphate-ribose) polymerase cleavage and the activation of caspases 3, 7, 8, and 9 and increased the expression of anti-apoptotic molecules Bcl-2 and c-FLIP. Conclusions. HCV NS5A downregulates TLR4 signaling and LPS-induced apoptotic pathways in human hepatocytes, suggesting that disruption of TLR4-mediated apoptosis may play a role in the pathogenesis of HCV infection.
Resumo:
OBJECTIVE: Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic beta-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS: We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS: Prolonged exposure of the beta-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in beta-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS: Our findings suggest that at least part of the detrimental effects of palmitate on beta-cells is caused by alterations in the level of specific miRNAs.
Resumo:
Mutations in humans are associated with several forms of inherited retinal dystrophies, such as Retinitis Pigmentosa which lead to retinal cell death and irreversible loss of vision. Genes involved in affected patients mainly encode proteins related to vision physiology including visual cycle and light-dependent phototransduction cascade. As reported in spontaneous and genetically engineered mouse models, apoptosis is a common fate in retinal degeneration, although the triggered signals to retinal apoptosis remain largely unraveled. Several studies highlighted that many of the molecular pathways involved in ocular diseases rely on caspase-dependent or -independent apoptotic mitochondrial pathway involving the Bcl-2 family of proteins. Anti- and pro-apoptotic Bcl-2 members are present in retinal tissues and are thought to play a role in the pathogenesis of several retinal disorders. Since almost no efficient treatments are available so far, it remains a great challenge to decipher the molecular pathways involved in retinal dystrophies and to develop alternative therapies to prevent or inhibit eye defect. Toward this goal, mutation-independent strategies such as molecular therapy provides promising and exciting approaches to deliver anti-apoptotic molecules targeting the Bcl-2 pathway through the use of cell permeable transport peptides. Modulation of common apoptotic signaling pathways may be of outstanding potential to target multiple retinal dystrophies regardless of the primary genetic defect.
Resumo:
A novel member of the tumor necrosis factor (TNF) receptor family, designated TRAMP, has been identified. The structural organization of the 393 amino acid long human TRAMP is most homologous to TNF receptor 1. TRAMP is abundantly expressed on thymocytes and lymphocytes. Its extracellular domain is composed of four cysteine-rich domains, and the cytoplasmic region contains a death domain known to signal apoptosis. Overexpression of TRAMP leads to two major responses, NF-kappaB activation and apoptosis. TRAMP-induced cell death is inhibited by an inhibitor of ICE-like proteases, but not by Bcl-2. In addition, TRAMP does not appear to interact with any of the known apoptosis-inducing ligands of the TNF family.
Resumo:
Valpha14 invariant (Valpha14i) NKT cells are a subset of regulatory T cells that utilize a semi-invariant TCR to recognize glycolipids associated with monomorphic CD1d molecules. During development in the thymus, CD4(+)CD8(+) Valpha14i NKT precursors recognizing endogenous CD1d-associated glycolipids on other CD4(+)CD8(+) thymocytes are selected to undergo a maturation program involving sequential expression of CD44 and NK-related markers such as NK1.1. The molecular requirements for Valpha14i NKT cell maturation, particularly at early developmental stages, remain poorly understood. In this study, we show that CD4-Cre-mediated T cell-specific inactivation of c-Myc, a broadly expressed transcription factor with a wide range of biological activities, selectively impairs Valpha14i NKT cell development without perturbing the development of conventional T cells. In the absence of c-Myc, Valpha14i NKT cell precursors are blocked at an immature CD44(low)NK1.1(-) stage in a cell autonomous fashion. Residual c-Myc-deficient immature Valpha14i NKT cells appear to proliferate normally, cannot be rescued by transgenic expression of BCL-2, and exhibit characteristic features of immature Valpha14i NKT cells such as high levels of preformed IL-4 mRNA and the transcription factor promyelocytic leukemia zinc finger. Collectively our data identify c-Myc as a critical transcription factor that selectively acts early in Valpha14i NKT cell development to promote progression beyond the CD44(low)NK1.1(-) precursor stage.
Resumo:
Clonal deletion of autoreactive thymocytes is important for self-tolerance, but the intrathymic signals that induce clonal deletion have not been clearly identified. We now report that clonal deletion during negative selection required CD28-mediated costimulation of autoreactive thymocytes at the CD4(+)CD8(lo) intermediate stage of differentiation. Autoreactive thymocytes were prevented from undergoing clonal deletion by either a lack of CD28 costimulation or transgenic overexpression of the antiapoptotic factors Bcl-2 or Mcl-1, with surviving thymocytes differentiating into anergic CD4(-)CD8(-) double-negative thymocytes positive for the T cell antigen receptor αβ subtype (TCRαβ) that 'preferentially' migrated to the intestine, where they re-expressed CD8α and were sequestered as CD8αα(+) intraepithelial lymphocytes (IELs). Our study identifies costimulation by CD28 as the intrathymic signal required for clonal deletion and identifies CD8αα(+) IELs as the developmental fate of autoreactive thymocytes that survive negative selection.