895 resultados para autonomous underwater vehicles
Resumo:
The newly adopted United Nations Education, Scientific and Cultural Organization's Convention on the Protection of the Underwater Cultural Heritage provides the first universal protection regime for this value archaeological resource. A central difficulty in concluding this Convention was defining underwater cultural heritage. This article considers the development of the definition agreed upon and analyses its utility in providing for a pragmatic and effective protection regime.
Resumo:
On 2 November 2001, the General Assembly of the United Nations Scientific, Economic and Cultural Organisation (UNESCO) adopted the convention on the Protection of the Underwater Cultural Heritage. Among the many complex issues addressed in the convention is the legal status of sunken state-owned vessels, including warships. Prior to the adoption of this convention, no conventional or customary international law existed with regards to the question of abandonment of state-owned vessels or the application of the principle of sovereign immunity to sunken state vessels. While difficulties between coastal states and maritime and former colonial powers resulted in a regime that does not comprehensively address the issues, the convention does provide some guidance in this regard and may provide a basis for further development.
Resumo:
This work discusses the use of optical flow to generate the sensorial information a mobile robot needs to react to the presence of obstacles when navigating in a non-structured environment. A sensing system based on optical flow and time-to-collision calculation is here proposed and experimented, which accomplishes two important paradigms. The first one is that all computations are performed onboard the robot, in spite of the limited computational capability available. The second one is that the algorithms for optical flow and time-to-collision calculations are fast enough to give the mobile robot the capability of reacting to any environmental change in real-time. Results of real experiments in which the sensing system here proposed is used as the only source of sensorial data to guide a mobile robot to avoid obstacles while wandering around are presented, and the analysis of such results allows validating the proposed sensing system.
Resumo:
Utilizar robôs autônomos capazes de planejar o seu caminho é um desafio que atrai vários pesquisadores na área de navegação de robôs. Neste contexto, este trabalho tem como objetivo implementar um algoritmo PSO híbrido para o planejamento de caminhos em ambientes estáticos para veículos holonômicos e não holonômicos. O algoritmo proposto possui duas fases: a primeira utiliza o algoritmo A* para encontrar uma trajetória inicial viável que o algoritmo PSO otimiza na segunda fase. Por fim, uma fase de pós planejamento pode ser aplicada no caminho a fim de adaptá-lo às restrições cinemáticas do veículo não holonômico. O modelo Ackerman foi considerado para os experimentos. O ambiente de simulação de robótica CARMEN (Carnegie Mellon Robot Navigation Toolkit) foi utilizado para realização de todos os experimentos computacionais considerando cinco instâncias de mapas geradas artificialmente com obstáculos. O desempenho do algoritmo desenvolvido, A*PSO, foi comparado com os algoritmos A*, PSO convencional e A* Estado Híbrido. A análise dos resultados indicou que o algoritmo A*PSO híbrido desenvolvido superou em qualidade de solução o PSO convencional. Apesar de ter encontrado melhores soluções em 40% das instâncias quando comparado com o A*, o A*PSO apresentou trajetórias com menos pontos de guinada. Investigando os resultados obtidos para o modelo não holonômico, o A*PSO obteve caminhos maiores entretanto mais suaves e seguros.
Resumo:
This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work it is proposed the design of a mobile system to assist car drivers in a smart city environment oriented to the upcoming reality of Electric Vehicles (EV). Taking into account the new reality of smart cites, EV introduction, Smart Grids (SG), Electrical Markets (EM), with deregulation of electricity production and use, drivers will need more information for decision and mobility purposes. A mobile application to recommend useful related information will help drivers to deal with this new reality, giving guidance towards traffic, batteries charging process, and city mobility infrastructures (e. g. public transportation information, parking places availability and car & bike sharing systems). Since this is an upcoming reality with possible process changes, development must be based on agile process approaches (Web services).
Resumo:
The large penetration of intermittent resources, such as solar and wind generation, involves the use of storage systems in order to improve power system operation. Electric Vehicles (EVs) with gridable capability (V2G) can operate as a means for storing energy. This paper proposes an algorithm to be included in a SCADA (Supervisory Control and Data Acquisition) system, which performs an intelligent management of three types of consumers: domestic, commercial and industrial, that includes the joint management of loads and the charge/discharge of EVs batteries. The proposed methodology has been implemented in a SCADA system developed by the authors of this paper – the SCADA House Intelligent Management (SHIM). Any event in the system, such as a Demand Response (DR) event, triggers the use of an optimization algorithm that performs the optimal energy resources scheduling (including loads and EVs), taking into account the priorities of each load defined by the installation users. A case study considering a specific consumer with several loads and EVs is presented in this paper.